期刊文献+

三段式编码的改进的IGA关联规则挖掘算法

Association Rule Mining Strategy Based on Three-Sectional Coding Immune Genetic Algorithm
下载PDF
导出
摘要 最新智能算法在关联规则挖掘上存在挖掘精度低,易陷入局部收敛,运行时间较长等弊端,针对以上问题,提出了求解连续属性关联规则挖掘的三段式的改进的免疫遗传挖掘算法(TIIGA),首先使用三段式编码方案降低分割点的选取对挖掘的影响,其次提出了基于矢量矩浓度的TIIGA的选择方案,可以提高挖掘规则的多样性和挖掘的精度,最后使用了自适应的交叉与变异因子降低人工设置参数对挖掘结果的干扰。实验结果表明,与最新智能算法相比,提出的TIIGA算法在关联规则连续属性挖掘上具有挖掘精度高、全局收敛,挖掘时间短等优势。 There are some shortcomings of low mining accuracy and falling into local convergence easily in the latest intelligence algorithm on the mining association rules mining. To solve these problems, a TIGA strategy was propose. Firstly, a three-step encoding was used to encode continuous association rule mining in order to educe the segmentation point of mining influence. Secondly, an immune algorithm was used to mine the association rules. A multidimensional mining plan was proposed based on vector distance of genetic algorithm, which can increase the diversity of population and the accuracy of mining rules. Finally, the adaptive crossover and mutation factors were uses to re- duce the interference of artificial setting parameters on the mining results. The experimental results show that, compared with the latest mining algorithm, the proposed algorithm has the advantages of high precision and global convergence based on mining association rules.
出处 《计算机仿真》 CSCD 北大核心 2014年第5期389-392,共4页 Computer Simulation
关键词 关联规则 三段式编码 免疫算法 矢量矩浓度 Association rules Three-stage coding Immune algorithm Vector matrix concentration
  • 相关文献

参考文献10

  • 1K Y Fung, et al. A multi-objective genetic algorithm approach to rule mining for affective product design [ J ]. Expert Systems with Applications, 2012, 39 ( 8 ) :7411-7419.
  • 2B Pei, et al. FARP: Mining fuzzy association rules from a probabi- listic quantitative database[ J ]. Information Sciences, 2013.
  • 3郑盼丽,戴牡红,谭一云,叶柏龙.自动生成数据挖掘算法的研究与应用[J].计算机科学,2012,39(S3):171-173. 被引量:5
  • 4张志锋,马军霞.基于三段式编码GA的连续属性关联规则挖掘方法[J].科学技术与工程,2012,20(26):6640-6643. 被引量:5
  • 5Y Massim, et al. Efficient immune algorithm for optimal allocations in series-parallel continuous manufacturing systems[J]. Journal of Intelligent Manufacturing, 2012,23 (5) : 1603-1619.
  • 6郑忠,周超,陈开.基于免疫遗传算法的车间天车调度仿真模型[J].系统工程理论与实践,2013,33(1):223-229. 被引量:21
  • 7D Liu, et al. A macro-evolutionary multi-objective immune algo- rithm with application to optimal allocation of water resources in Dongjiang River basins, South China[J]. Stochastic Environmen- tal Research and Risk Assessment, 2012,26(4) :491-507.
  • 8Y Jiang, J Jiang, Y Zhang. A Novel Fuzzy Muhiobjective Model Using Adaptive Genetic Algorithm Based on Cloud Theory for Serv- ice Restoration of Shipboard Power Systems [ J ]. Power Systems, IEEE Transactions on, 2012,27 (2) :612-620.
  • 9T Vidal, et al. A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time -windows[ J ]. Computers & Operations Research, 2012.
  • 10J Rang, et al. A behavioral analysis of web sharers and browsers in Hong Kong using targeted association rule mining[ J]. Tourism Management, 2012,33 (4) :731-740,.

二级参考文献23

  • 1凌晖,熊德华,杨杰,叶剑平.天车与冶炼炉作业调度的Petri网模型[J].数学的实践与认识,1996,26(1):61-65. 被引量:2
  • 2李铁克,周健,孙林.连铸连轧和冷装热轧并存环境下的炼钢-连铸生产调度模型与算法[J].系统工程理论与实践,2006,26(6):117-123. 被引量:18
  • 3Cokpinar C, Gtindem T I. Positive and negative association rules mining on XML data streams in database as a service concept . Ex- pert Systems with Applications, 2012 ;39 ( 8 ) : 7503-7511.
  • 4Wang Xin, Liu Xiaodong, Pedrycz W. Mining axiomatic fuzzy set as- sociation rules for classification problems. European Journal of Opera- tional Research,2012 ;212( 1 ) : 202-210.
  • 5Nebot V, Berlanga R. Finding association rules in semantic web da- ta. Knowledge-Based Systems ,2012 ;25 ( 1 ) : 51-62.
  • 6Fung K Y, Kwong C K, Siu K W M. A multi-objective genetic algo- rithm approach to rule mining for affective product design. Expert Systems with Applications, 2012 ;39 ( 8 ) : 7411-7419.
  • 7Yang Jianhua, Singh H, Hines E L. Channel selection and classifica- tion of electroencephalogram signals : an artificial neural network and genetic algorithm -based approach. Artificial Intelligence in Medi- cine, 2012;55(2) : 117-126.
  • 8Mamdoohi G, Abas A F, Samsudin K. Implementation of genetic al-gorithm in an embedded microcontroller-based polarization control system. Engineering Applications of Artificial Intelligence, 2012 ; 25 (4) : 869-873.
  • 9Altuntas S, Selim H. Facility layout using weighted association rule - based data mining algorithms: Evaluation with simulation. Expert Systems with Applications, 2012 ; 39 ( 1 ) : 3-13.
  • 10Mitra S, Mitra A. A genetic algorithm based technique for computing the nonlinear least squares estimates of the parameters of sum of expo- nentials model. Expert Systems with Applications, 2012 ; 39 ( 7 ) : 6370-6379.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部