摘要
基于奇函数,提出了一类新的四维混沌系统,通过调整该系统的参数,使其在某些平面上形成四翼.对该类系统进行了数值模拟,对其一些基本的动力学行为进行了分析,如平衡点、耗散性和Lyapunov指数.研究了混沌系统的参数敏感性,讨论了系统相图随参数变化所呈现的周期、混沌等状态.设计了一个混动系统的振荡电路,通过MULTISIM得到的相图与数值模拟结果具有良好的一致性.
ABSTRACT A kind of four-dimensional (4D) four-wing chaotic system was proposed based on the odd function. The chaotic system can generate four wings on a certain plane by adjusting some parameters. Its basic dynamic behaviors including equilibria, dissipativity and Lyapunov exponents were analyzed by numerical simulation. The sensitivity of system parameters to the chaotic behavior was also studied. When the parameters vary, the phase diagram can present periodic orbits, chaos, and other states. An oscillation circuit was designed for the chaotic system, and MUTISIM observed results have a good consistency with numerical simulation.
出处
《北京科技大学学报》
EI
CAS
CSCD
北大核心
2014年第5期680-687,共8页
Journal of University of Science and Technology Beijing
基金
中央高校基本科研业务费资助项目(06108128)
关键词
混沌系统
设计
奇函数
动力学分析
电路模拟
chaotic systems
design
odd functions
dynamic analysis
circuit simulation