期刊文献+

全基因测序法分析肺炎克雷伯菌JM45株对喹诺酮类药物耐药基因 被引量:6

Analysis of quinolone-resistance genes in Klebsiella pneumoniae JM45 by whole genome sequencing
原文传递
导出
摘要 目的分析泛耐药肺炎克雷伯菌JM45株携带的喹诺酮类药物耐药基因,研究其对喹诺酮类药物的耐药机制。方法采用Roche454高通量测序技术对肺炎克雷伯菌JM45株做全基因组测序(完成图),分析喹诺酮类耐药基因携带状况,再将gyrA与parC全长基因与其他6株肺炎克雷伯菌做分子进化分析。结果最终得到JM45株一条完整的基因组(染色体)序列及两条质粒序列;基因组(染色体)序列大小为5 273 812bp(GC含量65.8%),质粒1序列大小为317 156bp(GC含量53.0%),质粒2序列大小为12 209bp(GC含量55.3%);在基因组(染色体)序列中携带了gyrA基因(全基因组Feature ID:KPN_1614),parC基因(Feature ID:KPN_0743);与肺炎克雷伯菌喹诺酮类药物敏感株相比较,gyrA基因第83位密码子由TCC→ATC,翻译成氨基酸序列后丝氨酸(Ser)→异亮氨酸(Ile),parC基因第80位密码子由AGC→ATC,翻译成氨基酸序列后丝氨酸(Ser)→异亮氨酸(Ile)。结论肺炎克雷伯菌JM45株喹诺酮类药物耐药是gyrA基因和parC基因喹诺酮耐药决定区(QRDR)突变所致;gyrA与parC全长基因的分子进化分析提示JM45株与肺炎克雷伯菌HS11286关系最为接近(序列相同),与肺炎克雷伯菌342关系最远。 OBJECTIVE To investigate the quinolone-resistance genes in pandrug-resistant Klebsiella pneumoniae JM45 and study the drug resistance mechanisms of the strain to the quinolones antibiotics. METHODS The whole genome sequencing ( completed graph)was performed by using high throughput Roche 454 sequencing approach, then the quinolone-resistance genes were analyzed, and the molecular evolutionary analysis was performed with full-length gyrA and parC between JM45 and other 6 K. pneumoniae isolates. RESULTS A complete gerlome (chromosome) sequence and 2 plasmids sequences were obtained in JM45. The size of chromosome was 5 273 812 bp (GC content: 65.8%), the size of plasmid 1 was 317 156 bp (GC content.. 53.0%), and the size of plasmid 2 was 12 209 bp ( GC content : 55.3 % ). gyrA ( Feature ID.. KPN_ 1614) and parC ( Feature ID: KPN_0743) were positive in chromosome. As compared with the K. pneumoniae strains which were sensitive to quinolor^es, the 83 rd codon of gyrA in JM45 changed from TCC to ATC(Ser-~Ile), and the 80th codon of parC in JM45 changed from AGC to ATC(Ser--~Ile). CONCLUSION Mutations of gyrA and parC in quinolone resist- anee-determining region (QRDR) play a key role in quinolone resistance of JM45. And the moIecular evolutionary analysis of full-length gyrA and parC suggests that the closest relationship exists between JM45 and K. pneumon- iae subsp, pneumoniae HSl1286 (the same sequence), and that the farthest relationship exists between JM45 and K. pneumoniae 3 4 2.
出处 《中华医院感染学杂志》 CAS CSCD 北大核心 2014年第10期2341-2344,共4页 Chinese Journal of Nosocomiology
基金 国家"十一五"科技重大专项基金项目(2008ZX100-03-004) 杭州市科技计划引导基金资助项目(2012028)
关键词 肺炎克雷伯菌 泛耐药 全基因组测序 完成图 喹诺酮类 Klebsiella pneumoniae Pandrug-resistance Whole genome sequeneing Completed graphs Quinolone
  • 相关文献

参考文献5

  • 1糜家睿,黄支密,糜祖煌.多药耐药肺炎克雷伯菌喹诺酮类耐药相关基因研究[J].中华医院感染学杂志,2009,19(24):3301-3304. 被引量:36
  • 2王辉,倪语星,陈民钧,胡必杰,王明贵,陈佰义,胡继红,胡云建.新型甘氨酰环素类抗菌药物替加环素的体外药敏试验操作规程[J].中华检验医学杂志,2009,32(11):1208-1213. 被引量:65
  • 3Wang M,Guo Q,Xu X,etal. New plasmid-mediated quinolo- ne resistance gene,qnrC,found in a clinical isolate of Proteus mirabilis[J]. Antimicrob Agents Chemother, 2009, 53 (5) : 1892-1897.
  • 4Yamane K,Wachino JI,Suzuki S,et al. New Plasmid-Media- ted Fluoroquinolone Efflux Pump, QepA, Found in an Esche- richia coli Clinical Isolate[J]. Antimicrob Agents Chemoth- er,2007,51(9) :3354-3360.
  • 5Liu P, Li P, Jiang X, et al. Complete Genome Sequence of Klebsiella pneumoniae subsp, pneumoniae HS11286,a Mul- tidrug-Resistant Strain Isolated from Human Sputum[J]. J Bacteriol, 2012,194(7) : 1841-1842.

二级参考文献32

  • 1Petersen PJ, Jacobus NV, Weiss WJ, et al. In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother, 1999, 43:738-744.
  • 2Bradford P. Tigecycline: a first in class glycylcycline. Clin Micro Newsl, 2004,26:163-168.
  • 3Felmingham D. Tigecycline-the first glycylcycline to undergo clinical development: an overview of in vitro activity compared to tetracycline. J Chemother, 2005,17 Suppl 1:5-11.
  • 4Chopra I, Hawkey PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother,1992 ,29 :245-277.
  • 5Schnappinger D, Hillen W. Tetraeyclines: antibiotic action, uptake, and resistance mechanisms. Arch Mierobiol, 1996, 165:359-369.
  • 6Bauer G, Berens C, Projan SJ, et al. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drugdirected Fe^2 + cleavage of 16S rRNA. J Antimicrob Chemother, 2004, 53:592-599.
  • 7Olson MW, Ruzin A, Feyfant E, et al. Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob Agents Chemother, 2006,50 : 2156 -2166.
  • 8Keeney D, Ruzin A, Bradford PA. RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Mierob Drug Resist, 2007,13:1-6.
  • 9Ruzin A, Visalli MA, Keeney D, et al. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother,2005,49 : 1017-1022.
  • 10Visalli MA, Murphy E, Projan SJ, et al. AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline ( GAR- 936) in Proteus mirabilis. Antimicrob Agents Chemother. 2003.47,665-669.

共引文献95

同被引文献114

  • 1冯福英,兰小鹏,杨湘越,张亚彬,胡辛兰,郭容英.大肠埃希菌和肺炎克雷伯菌质粒AmpC酶基因型及流行病学分析[J].中华检验医学杂志,2007,30(3):314-318. 被引量:15
  • 2Nawaz, Khan SA, Tran Q, et al. Isolation and characterization of multidrug-resistant Klebsiella spp. isolated from shrimp im- ported from Thailand[J]. Int J Food Microbial, 2012, 155(3): 179-84.
  • 3Yong D, Toleman MA, Giske CG, et al. Characterization of a new netallo-β-laetamase gene, blaNDM-1, and a novel erythro- mycin esterase gene carried on a unique genetic structure in Kleb- siella pneumoniae sequence type 14 from India[J]. Antimicrob A- gents Chemother, 2009, 53(12)z 5046--54.
  • 4Nesar S, Shoaib MH, Rahim N, et al. Emergence of resistance to fluoroquinolones among gram positive and gram negative clini- calisolates[J]. PakJ PharmSci, 2012, 25 (4): 877--81.
  • 5Wei ZQ, Chen YG, Yu YS, et al. Nosocomial spread of multi re- sistant Klebsiella pneumoniae containing a plasmid encoding mul- tiple 13-1actamases[J]. J Med Microbiol, 2005, 54 (9): 885 8.
  • 6Mavroidi A, Miriagou V, Liakopoulos A, et al. Ciprofloxacin-re sistant Escherichia coli in central Greece: mechanisms of resist- ance and molecular identification[J]. BMC Infect Dis, 2012, 12 (1) : 371.
  • 7Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase producing bacteria[J]. Lancet In- fect Dis, 2009(9) : 228--36.
  • 8Billal DS, Fedorko DP, Yan SS, et al. In vitro induction and se- lection of fluoroquinolone resistant mutants of Streptococcus pyogenes strains with multiple emm types[J]. Antimicrob A- gents Chemother, 2007, 59(1): 28--34.
  • 9Zhang Y, Yang J, Luo Y, et al. tidrug resistant Escherichia coli lates, 2007--2009, China[J]. (5), 465--70. Characterization of clinical mul- and Klebsiella pmeumoniae iso- Microb Drug Resist, 2012, 18.
  • 10Chen FJ, Lauderdale TL, Ho M, et al. The roles of mutations in gyrA, parC, and ompK35 in fluoroquinolone resistance in Klebsiella pneumaniae [J]. Microb Drug Resist, 2003, 9 (3) 265-71.

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部