期刊文献+

面向目标跟踪的物联网感知层节点部署优化研究

Research on Deployment Optimization of Sensor Layer Node in Target tracking IOT
下载PDF
导出
摘要 针对目标跟踪物联网感知层节点动态部署的特点,在人工鱼群算法和虚拟力算法的基础上,设计了融入虚拟力影响的人工鱼群控制算法,给出了算法的参数自适应调整策略,该算法利用节点间的虚拟力来影响人工鱼的觅食行为和追尾行为,指导人工鱼群的进化过程,加快算法的收敛性。仿真实验结果显示,算法能快速有效地实现无线传感器网络节点的部署优化,与人工鱼群算法和虚拟力算法相比,该算法不仅全局寻优能力强,且收敛速度快,可有效提高网络覆盖率,优化网络性能。 This paper proposes a virtual force-directed artificial fish swarm algorithm, and applied this algorithm to Sensor Layer nodes deployment of Target tracking IOT. In this algorithm, the virtual force influence the foraging behavior and rear-end behavior of artificial fish, direct the moving and updating status of artificial fish for improving the convergence speed. Simulation results show that virtual force-directed artificial fish swarm algorithm has better performance on regional convergence and global searching ability than virtual force algorithm and artificial fish swarm algorithm, and it can implement dynamic sensor nodes deployment efficiently and rapidly.
出处 《无线互联科技》 2014年第5期10-12,14,共4页 Wireless Internet Technology
基金 安徽省教育厅自然科学基金(KJ2012B067) 安徽省优秀青年人才基金(2012SQRL241)
关键词 物联网 感知层节点 虚拟力 人工鱼群算法 部署策略 Internet of things Sensor Layer Node Virtual Force Artificial fish-swarm algorithm Deployment strategy
  • 相关文献

参考文献4

二级参考文献49

  • 1屈玉贵,翟羽佳,蔺智挺,赵保华,张英堂.一种新的无线传感器网络传感器放置模型[J].北京邮电大学学报,2004,27(6):1-5. 被引量:24
  • 2闻英友 ,冯永新 ,王光兴 .无线传感器网络中基于伸展树的感知节点分布优化[J].自动化学报,2005,31(5):737-742. 被引量:4
  • 3P D Vanheeghe E,Dumont P E,Nimier V.Sensor management with respect to danger level of targets[A].IEEE Conference on Decision and Control[C].Orlando:IEEE Press,2001,5:4439-4444.
  • 4TheinLai Wong,Tatsuhiro Tsuchiya,Tohru Kikuno.A self-organizing technique for sensor placement in wireless micro-sensor networks[A].Proc 18th Inter national Conference on Advanced Information Networking and Applications (AINA)[C].Fukuoka:IEEE Press,2004,1:78-83.
  • 5T H T Yan,J A Stankovic.Differentiated surveillance for sensor networks[A],The First ACM Conference on Embedded Networked Sensor Systems (Sensys03)[C].Los Angeles:ACM Press,2003.51-62.
  • 6Viera M A M,Viera L F M,et al.Scheduling nodes in wireless sensor networks:a Voronoi approach[A].LCN 2003-28th Annual IEEE Inter national Conference[C].Bonn:IEEE Press,2003.423-429.
  • 7J W S Yang.Coverage issue in sensor networks with adjustable ranges[A].Inter national Conference on Parallel Processing Workshops (ICPPW'04)[C].Montreal:IEEE Computer Society,2004.61-68.
  • 8V Nojeong Heo,P K,et al.An intelligent deployment and clustering algorithm for a distributed mobile sensor network[A].Proc of the 2003 IEEE Inter national Conference on Systems,Man & Cyber netics[C].Washington,D C:IEEE Press,2003,5:4576-4581.
  • 9T Jun Lu,Suda,et al.Coverage-aware self-scheduling in sensor networks[A].Computer Communications[C].IEEE 18th Annual Workshop.Dana Point,CA:IEEE Press,2003.117-123.
  • 10O Khatib.Real-time obstacle avoidance for manipulators and mobile robots[J].Inter national Jour nal of Robotics Research.1986,5(1):90-98.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部