期刊文献+

基于相位-强度调制转换的光纤色散精确测量方法 被引量:3

Accurate measurement of chromatic dispersion of optical fibers based on phase-intensity modulation conversion
原文传递
导出
摘要 在分析光纤色散导致的相位-强度调制转换的基础上,提出了一种利用电光相位调制的光纤色散扫频测量方法。方法的原理为光纤色散使相位调制信号获得附加相移并产生周期性衰落,从衰落曲线的特征性凹陷频率确定出光纤色散。实际运用中,由于凹陷频率附近的信号弱,因此噪声大且不稳定。为了解决这一问题,通过衰落曲线的多项式拟合,进一步提高凹陷频率和光纤色散的测量精度。实验中,对长光纤或者短光纤分别测试以验证本文方法对于不同色散的适应性。实验结果表明,本文方法的相对误差小于0.22%。使用矢量网络分析仪(VNA)和相位调制器进行测试,可工作于不同光波长,适用于测量不同种类的光纤的色散;并且可以利用简单的实验系统,实现光纤色散的大小和符号的测量。 For an accurate characterization of fiber dispersion,we propose a swept-frequency measurement of chromatic dispersion based on the phase-intensity modulation conversion in a dispersive optical fiber. In principle, the fiber dispersion introduces additional phase shifts and causes the periodical fading of the phase-modulated signal, which allows to determine the dispersion from the fading frequency. In practice, the fading signals are very noisy and unstable due to close to the unavoidable noise floor,which makes it very difficult to precisely determine the notch frequencies. For an improved accuracy of characteristic notch frequency,the polynomial fitting of the fading curve is adopted in our method. In the experiment, our method is verified by long and short fibers with different amounts of dispersion. Experimental results show that our measurement holds a relative error of less than 0.22%. Moreover,our method is applica- ble for the chromatic dispersion measurement at different operating wavelengths and dispersive fibers on- ly by using a vector network analyzer and an optical phase modulator,and it gives both the value and the sign of the chromatic dispersion with very simple configuration.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第5期932-936,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61377037 61090393 61307031) 科技部'973'计划(2012CB315201) 教育部新世纪人才支撑计划(NCET-11-0069) 四川省青年基金(2013JQ0026) 信息光子学与光通信国家重点实验室开放基金资助项目
关键词 光纤色散 凹陷频率 电光相位调制 微波光子学 fiber dispersion notch frequency electro-optical phase modulation microwave photonics
  • 相关文献

参考文献17

  • 1Cohen L G, Lin C. Pulse delay measurements in the zero material dispersion wavelength region for optical fibers[J]. Applied Optics, 1977,16(12) : 2136-2139.
  • 2Neumann N, Herschel R, Schuster T, et al. Dispersion esti- mation via vestigial sideband filtering using an optical de- lay line filter[J]. Journal of Optical Communications and Networking, 2011,3(2) : 155-161.
  • 3Daikoku K, Sugimura A. Direct measurement of wave- length dispersion in optical fibers-difference method[J]. Electronics Letters, 1978,14(5) : 149-151.
  • 4BIAO Fu, HUI Rong-qing. Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection[J]. IEEE Photonics Technology Letters, 2005, 17(7) : 1561-1563.
  • 5WANG Bin-hao, YAN Guo-feng, YAN Chun-sheng. Fiber length and chromatic dispersion measurement technology using a novel optical frequency domain reflectometry[A]. Advances in Optoelectronics and Micro/Nano-Optics (AOM), 2010 OSA-IEEE-COSEO-I. 2010,1-3.
  • 6ZONG Liang-jia, LUO Feng-guang, OUI Suo-chao, et al. Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer[J] Optics Letters, 2011,36(5) : 660-662.
  • 7温晓东,宁提纲,油海东,李晶,冯亭,裴丽,简伟.Up-tapered fiber Mach-Zehnder interferometer fabricated by using a fusion splicer[J].Optoelectronics Letters,2013,9(5):325-328. 被引量:4
  • 8Yamamoto T, Kurokawa K J, Tajima K, et al. Simple and precise chromatic dispersion measurement using sinu- soidally phase-modulated CW light [ A]. Optical Fiber Communication Conference[C]. 2009.
  • 9刘双,蒲涛,钱祖平,王荣,王珏.光生和光传微波信号的动态色散补偿的一种新方法[J].光电子.激光,2012,23(12):2316-2320. 被引量:4
  • 10ZHOU Jun,CHEN Guo-rong,LIU Yu, et al. Electrolumines- cent devices based on amorphous SiN/Si quantum dots/ amorphous SiN sandwiched structures[J]. Optics Ex- press, 2009,17 (1) : 156-162.

二级参考文献22

  • 1A.-P. Luo, Z.-C. Luo and vi-c. Xu, Opt. Lett. 34, 2135 (2009).
  • 2D. Mechin, P. Yvemault, L. Brilland and D. Pureur, Journal of Lightwave Technology 21,1411 (2003).
  • 3M. Hongyun, W. Xiaowei, S. Wei and H. Xuguang, IEEE Photonics Technology Letters 24, 206 (2012).
  • 4J. Sie-Wook, S. Ki-Hee, K. Kwang Taek, M. A. Jung and P. Chang-Soo, IEEE Photonics Technology Letters 23, 1421 (2011).
  • 5CHEN Wei-guo, LOU Shu-qin, WANG Li-wen and JIAN Shu i-sheng, Journal of Optoelectronics' Laser 22, 175 (2011).
  • 6TANG Chang-ping, DENG Ming, ZHU Tao and RAO Yun-jiang, Journal of Optoelectronics' Laser 22, 1304 (2011).
  • 7T. Zhaobing, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock and R. D. Oleschuk, IEEE Photonics Technology Letters 20, 626 (2008).
  • 8A. Rahmouni, N. Azami and F. Abdi, Numerical Analysis of Athermal DPSK based on Unbalanced Thermally Expanded Core Optical Fibers Mach Zehnder Interferometer, 5th International Symposium on IN Communications and Mobile Network (ISVC), I (2010).
  • 9Y. Kim, N. Kim, Y. Chung, u-c. Paek and W.-T. Han, Opt. Express 12, 651 (2004).
  • 10L. V. Nguyen, D.-s. Hwang, D. S. Moon and Y. Chung, Optics Communications 281, 5793 (2008).

共引文献6

同被引文献31

  • 1方伟,马秀荣,郭宏雷,曹晔,岳洋,开桂云.光纤色散测量概述[J].光通信技术,2006,30(9):24-26. 被引量:9
  • 2Predehl K,Grosche G,Raupach S M F,et al. A 920-kilo- meter optical fiber link for frequency metrology at the 19th decimal place[J]. Science,2012,336(27) :441-444.
  • 3Lopez D,Amy-Klein A,Daussy C,et al. 86 km optical link with a resolution of 2 × 10^-18 for RF frequency transfer [J]. Eur. Phys. d. D,2008,48(1) :35-41.
  • 4Wang B, Gao C, Chen W L, et al. Precise and continuous time and frequency synchronisation at the 5 × 10^-19 accu- racy level[J]. Scientific Reports, 2012,2,: 1-4.
  • 5Gao C, Wang B, Chen W L, et al. Fiber-based multiple- access ultrastable frequency dissemination [J]. Optics Letters, 2012,37(22) : 4690-4692.
  • 6Miho Fujieda, Motohiro Kumagai, Shigeo Nagano, et al. All-optical link for direct comparison of distance optica clocks [J]. Optical Society of America, 2011, 19 (17): 16498-16507.
  • 7Lukasz Sliwczynski, Przemyslaw Krehlik,Lukasz Buczek, et al. Active propagation delay stabilization for fiber-optic frequency distribution using controlled electronic delay line[J]. IEEE Transactions on Instrumentation and Meas- urement, 2011,60(4) : 1480-1488.
  • 8Albin Czubla, Lukasz Sliwczynski, Przemyslaw Krehlik, et al. Stabilization of the propagation delay in fiber optics in a frequency distribution link using electronic delay lines; first measurement results[A]. Proc. of 42nd Annual Pre- cise Time and Time Interval (PTTI) Meeting[C]. 2012, 389-396.
  • 9Per Olof Hedekvist, Sven Christian Ebenhag, Kenneth Jal- dehag. Active optical pre-compensation in short range frequency transfer in optical single-mode fiber[A]. Proc. of 2011 Joint Conference of the IEEE International Fre- quency Control and the Europen Frequency and Time Fo- rum[C]. 2011,1-2.
  • 10Celano T P,Stein S R,Gifford G A,et al. Sub-picosecond active timing control over fiber optical cable[A]. Proc. of 2002 IEEE International Frequency Control Symposium and PDA Exhibition[C]. 2002,510-516.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部