期刊文献+

基于压缩感知的图像压缩抗干扰重构算法 被引量:10

An anti-interference reconstruction algorithm of image compression based on compressed sensing
原文传递
导出
摘要 针对传统图像变换压缩方法压缩的图像经无线信道传输时受高斯随机干扰导致重要变换系数失真出现重构图像局部内容缺失的现象,本文根据压缩感知(CS)信号分量具有同等重要性的特性,理论分析了去除失真CS信号分量以抵御干扰的可行性,提出一种基于CS的图像压缩抗干扰重构算法。算法首先假定已知受高斯随机干扰的比特所对应的CS信号分量的位置,然后根据这些位置确定新的CS信号和重构矩阵,再进行阈值迭代重构。仿真结果表明,本文算法在低误码率(BER)下得到精确重构的图像,在高BER下得到图像内容无缺失仅全局质量小幅下降的重构图像。因此,基于CS的图像压缩抗干扰重构算法能够较好地克服变换压缩方法以及阈值迭代重构算法抗干扰能力低的不足,从而为图像无线传输抗高斯随机干扰问题提供一种可行的解决方案。 When the images compressed by traditional transformation compression algorithms are trans- mitted over wireless channels,if Gaussian random interference causes the loss of the crucial transforma- tion coefficients,the contents of the reconstructed images will be lost obviously and this will reduce the accuracy of the subsequent detection and recognition results greatly. In order to solve this problem, based on the characteristics of equal importance about each compressed sensing component, this paper first an- alyzes the feasibility of resisting the interference by removing the distorted compressed sensing signal components, then proposes an anti-interference image reconstruction algorithm. This algorithm first con- firms the new compressed sensing signals and the new reconstruction matrix based on the locations of the corresponding compressed sensing signal components of the Gaussian-interfered bits, and then recon- structs the original images employing the iterative threshold algorithm. The simulation results demon- strate that our algorithm can reconstruct exact images at low bit error rates, and inexact images whose qualities are slightly lowered without loss of local contents at high bit error rates. As a result, our algo- rithm can overcome the deficiency in anti-interference ability of transformation compression algorithms and the iterative threshold algorithm, thus proposes a feasible scheme for the anti-interference problem that arises in wireless image transmission.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第5期1003-1009,共7页 Journal of Optoelectronics·Laser
基金 中科院光电信息处理重点实验室基金(OEIP-O-201102)资助项目
关键词 抗干扰 压缩感知(CS) 图像重构 高斯随机干扰 anti-interference compressed sensing (C S) image reconstruction Gaussian random inter-{erence
  • 相关文献

参考文献14

  • 1Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006,52(4) :1289-1306.
  • 2Cand6s E J,Compressive sampling[J]. Int. Congress of Mathematics, Spain, 2006,3 : 1433-1452.
  • 3Cand's E J, Tao T. Near optimal signal recovery from random projeciions:Universal encoding strategies? [J]. IEEE Transactions on Information Theory, 2006,52 (12) : 5406-5425.
  • 4解成俊,徐林.Design and realization of random measurement scheme for compressed sensing[J].Optoelectronics Letters,2012,8(1):60-62. 被引量:3
  • 5张成,杨海蓉,程鸿,韦穗.基于压缩感知的超分辨率图像重建[J].光电子.激光,2013,24(4):805-811. 被引量:12
  • 6Lampe L. Bursty impulse noise detection by compressed sensing[A]. IEEE International Symposium on Power Line Communications and its Applications[C]. 2011,29-34.
  • 7Candes E J, Romberg J,Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Informa- tion Theory,2006,52(2) :489-509.
  • 8Cand6s E J,Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008,3 : 21-30.
  • 9Cand:s E J, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J]. Foundations of Computational Mathematics, 2004,2 ( 6 ) : 227-254.
  • 10Cand's E J, Romberg J. Sparsity and incoherence in compressive sampling [J]. Inverse Problems, 2007, 23 (3) :969-985.

二级参考文献43

  • 1Donoho D,IEEE Transactions on Information Theory52,1289(2006).
  • 2Candès E,Romberg J and Tao T,IEEE Transactions on Infor-mation Theory52,489(2006).
  • 3Romberg J,IEEE Signal Processing Magazine25,14(2006).
  • 4Duarte M F,Davenport M A,Takhar D,Sun T,Kelly K F and Baraniuk R G,IEEE Signal Processing Magazine25,83(2008).
  • 5Baraniuk R and Steeghs P,Compressive Radar Imaging,IEEE:Proceedings of the Radar Conference,Washington D.C.,128(2007).
  • 6Bhattacharya S,Blumensath T,Mulagrew B and Davies M,Fast Encoding of Synthetic Aperture Radar Raw Data Using Compressed Sensing,IEEE Proceedings of Statistical Sig-nal Processing,Washington D.C.,448(2007).
  • 7Lustig M,Donoho D L and Pauly J M,Magnetic Resonance in Medicine58,1182(2007).
  • 8Hu S,Lustig M,Chen A P,Crane J,Kerr A,Kelley D AC,Hurd R,Kurhanewicz J,Nelson S J,Pauly J M and Vigneron D B,Journal of Magnetic Resonance192,258(2008).
  • 9Candès E and TAO T,IEEE Transaction on Information Theory 51,4203(2005).
  • 10Candès E and J.Romberg,Found.Comput.Math.6,227(2006).

共引文献13

同被引文献132

  • 1朱曦,林行刚.视频镜头时域分割方法的研究[J].计算机学报,2004,27(8):1027-1035. 被引量:20
  • 2Pandharipande A, Caicedo D. Adaptive illumination ren- dering in LED lighting systems [J]. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 2013, 43 (5) :1052-1062.
  • 3Wang Z Z,Tan Y K. Illumination control of LED systems based on neural network model and energy optimization algorithm[J]. Energy And Buildings, 2013,62 : 514-521.
  • 4Oaicedo D, Pandharipande A. Distributed illumination con- trol with local sensing and actuation in networked lighting systems[J]. Sensors ,Journal, IEEE, 2013,13 (3) : 1092- 1104.
  • 5Dong J, van Driel W, Zhang G. Automatic diagnosis and controt of distributed solid state lighting systerns[J]. Op- tics Express, 2011,19 (7) : 5772-5784.
  • 6Yang H M,Bergmans J W,Schenk T C W,et al. An ana- lytical model for the iBuminance distribution of a power LED[J]. Optics Express, 2008,16(26) : 21641-21646.
  • 7Yang H M,Bergmans J W M,Schenk T C W. Illumination sensing in LED lighting systems based on frequency-divi- sion multiplexing [J]. Signal Processing, IEEE Transac- tions on,2009,57(11) :4269-4281.
  • 8Yang H M,Schenk T O W, Bergmans J W M,et al. En- hanced illumination sensing using multiple harmonics for LED lighting systems[J]. Signal Processing, IEEE Trans- actions on, 2010,58(1 1) : 5508-5522.
  • 9Pang G, Kwan T, Liu H, et el. LED wireless[J]. Industry Applications Magazine, IEEE, 2002,8 ( 1 ) : 21-28.
  • 10Komine T, Nakagawa M. Fundamental analysis for visible- light communication system using LED lights[J]. Consum- er Electronics, IEEE Transactions on, 2004,50 ( 1 ) : 100- 107.

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部