期刊文献+

图像质量客观评价的复数矩阵结构相似度方法 被引量:15

Objective image quality assessment based on complex matrix structure similarity
下载PDF
导出
摘要 客观评价数字图像质量的目的是为了得到与人眼视觉特性一致的评价结果,因此,图像结构的分析和比较要考虑图像中人眼敏感程度不同的各种因素。针对单一图像特征描述图像结构信息过于片面的问题,引入了图像结构信息表示的复数方法,构造了用于描述图像结构信息的复数矩阵。把复数作为一种信息合并方法,将图像中人眼敏感程度较高的局部方差分量和代表一般敏感信息的图像像素的灰度值分布作为复数的实部和虚部。研究了非实数域的结构相似度方法以及数学模型,将该方法用于度量两图像复数矩阵的结构相似度,采用包含779张失真图像的LIVE数据库以及相应的拟合函数验证了复数结构相似度方法。交叉失真和分类失真图像测试实验表明,所提出的复数矩阵结构相似度方法的整体性能与人眼视觉特性的一致性优于MSE等传统方法,和SSIM等流行的方法以及QSSIM等较新的方法相比也有较大优势。 The purpose of objectively assessing digital image quality is to obtain the assessment results consistent with human visual perception.Different sensitivity factors of human visual system needs to be considered in the analysis and comparison of image structure in order to obtain the image quality assessment results consistent with human perception.Aiming at the problem that single property of image structure information is too unilateral to describe the comprehensive image structure,a complex number method is used to describe the image structure information.A complex matrix is constructed to describe the image structure information.The complex number is taken as an information combination method; and the local variance component with high human eye sensitivity in the image and the grey scale distribution of the image pixels representing general sensing information are taken as the real part and imagery part,respectively.On this basis,the structure similarity method in non-real number domain and its mathematic model were deeply studied; and the method was used to measure the structure similarity of the complex matrixes of two images; then,the quantitative results were obtained.The LIVE database including 779 distorted images and corresponding fitting function were adopted to verify the complex matrix structure similarity method.The cross-distortion experiment and classification distortion experiment results show that using the proposed complex matrix structure similarity method,the consistency of overall performance with human visual perception is better than that using the state-of-the-art methods,such as MSE,SSIM methods and the new QSSIM method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第5期1118-1129,共12页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金青年基金(61201368)资助项目
关键词 图像质量评价 复数矩阵 局部方差 结构相似度 image quality assessment complex matrix local variance structure similarity
  • 相关文献

参考文献24

  • 1SHEIKH H.R,SABIR M.F,BOVIK A.C.A statistical evaluation of recent full reference image quality assessment algorithms[J].IEEE Trans.Image Processing,2006,15(11):3440-3451.
  • 2WANG Z,BOVIK A C.Modem image quality assessment[M].San Rafael,Morgan & Claypool Publishers,2006.
  • 3BABUA R V,SURESH S,PERKISC A.No-reference JPEG-image quality assessment using GAP-RBF[J].Signal Processing,2007,87(6):1493-1503.
  • 4ZHANG J,LET M.A new no-reference quality metric for JPEG2000 images[J].IEEE Transactions on Consumer Electronics,2010,56(2):743-750.
  • 5桑庆兵,齐会新,吴小俊,李朝锋.基于DCT系数无参考模糊图像质量评价方法[J].仪器仪表学报,2013,34(11):2599-2604. 被引量:17
  • 6LIU H T,KLOMP N,HEYNDERICKX I,A no-reference metric for perceived ringing artifacts in images[J].IEEE Transactions on Circuits and Systems For Video Technology,2010,20(4):529-539.
  • 7ANGELA D,LI Z P,MAURO B.A full-reference quality metric for geometrically distorted images[J].IEEE Transactions on Image Processing,2010,19(4):867-881.
  • 8朱晓冬,陈英,李敏基,王善辉.系列虹膜图像质量评价[J].仪器仪表学报,2006,27(z3):2173-2176. 被引量:3
  • 9SURESH S,BABU R V,KIM H J.No-reference image quality assessment using modified extreme learning machine classifier[J].Applied Soft Computing,2009,9(2):541-552.
  • 10ZHOU W,BOVIK A C.A universal image quality index[J].IEEE Signal Processing Letters,2002,9(3):181-184.

二级参考文献83

共引文献113

同被引文献160

  • 1李英壮,高拓,李先毅.基于云计算的视频推荐系统的设计[J].通信学报,2013,34(S2):138-140. 被引量:8
  • 2李连胜,陈晚华.基于MATLAB的数字图像质量评价[J].湖南科技学院学报,2005,26(5):176-177. 被引量:14
  • 3狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006,35(5):766-771. 被引量:65
  • 4YALMAN Y.Histogram based perceptual quality assess-ment method for color images[J].Computer Standards &Interfaces,2014,36(6);899-908.
  • 5KOLAMAN A,YADID-PECHT 0.Quaternion StructuralSimilarity:A new quality index for color images[J].IEEE Transactions on Image Processing,2012,21(4):1526-1536.
  • 6REHMAN A,ZHOU W.Reduced-reference image qualityassessment by structural similarity estimation[J].IEEETransactions on Image Processing,2012,21(8):3378-3389.
  • 7PANETTA K,GAO CH,AGAIAN S.No reference colorimage contrast and quality measures[J].IEEE Transac-tions on Consumer Electronics,2013,59(3):643-651.
  • 8GOLESTANEH S A,CHANDLER D M.No-referencequality assessment of JPEG images via a quality rele-vance map[J].IEEE Signal Processing Letters,2014,21(2):155-158.
  • 9MOORTHY A K,BOVIK A C.Blind image quality as-sessment:From natural scene statistics to perceptualquality[J].IEEE Transactions on Image Processing,2011,20(12):3350-3364.
  • 10SAAD M A,BOVIK A C B,CHARRIER C.Model-based blind image quality assessment:A natural scenestatistics approach in the DCT domain[J].IEEE Trans-actions Image Processing,2012,21(8):3339-3352.

引证文献15

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部