摘要
关注一类具变指数非线性拟抛物方程初边值问题弱解的渐近行为和弱解支集的单调性问题.利用泛函的凸性,得到弱解的能量等式,根据此结果并使用Poincaré不等式和Hlder不等式,讨论了具变指数非线性拟抛物方程弱解的渐近行为.此外,使用Steklov均值性质,导出弱解的比较原理,在一维情形中,利用该比较原理,证明了此拟抛物方程弱解支集的单调性.
The asymptotic behavior and monotonicity support of weak solutions to the initial-boundary value problem for a class of nonlinear pseudoparabolic equation with variable exponent are considered. The energy equality of weak solutions is obtained by using convexity of functional. By this and Poincaré's and Hlder's inequalities the asymptotic behavior of weak solutions to the nonlinear pseudoparabolic equation with variable exponent is discussed.The comparison principle is obtained by using of Steklov mean property of weak solutions. By this comparison principle,the monotonicity support of weak solutions is proved in 1-dimension.
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2014年第3期30-33,共4页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11071098)
关键词
变指数
非线性拟抛物方程
弱解
渐近行为
支集
variable exponent
nonlinear pseudoparabolic equation
weak solution
asymptotic behavior
support