期刊文献+

左截断右删失数据下二项分布参数多变点的贝叶斯估计 被引量:3

Bayesian Estimation of Parameter of Binomial Distribution with Multiple Change Points for Left Truncated and Right Censored Data
下载PDF
导出
摘要 通过添加缺损的寿命变量数据得到了左截断右删失数据下二项分布的完全数据似然函数.给出了变点位置和其他参数的满条件分布.利用Gibbs抽样与Metropolis-Hastings算法相结合的MCMC方法对各参数的满条件分布分别进行了抽样.详细介绍了MCMC方法的实施步骤.得到了参数的Gibbs样本,把Gibbs样本的均值作为各参数的贝叶斯估计.随机模拟试验的结果表明各参数贝叶斯估计的精度都较高. By filling in the missing data of the life variable,the complete-data likelihood function of binomial distribution for left truncated and right censored data is obtained. The full conditional distributions of change-point positions and other parameters are given. Every parameter is sampled from the full conditional distributions respectively,using MCMC method of Gibbs sampling together with Metropolis-Hastings algorithm. The implementation steps of MCMC method are introduced in detail. Gibbs samples of the parameters are obtained,and the means of Gibbs samples are taken as Bayesian estimations of the parameters. The random simulation test results show that Bayesian estimations of the parameters is fairly accurate.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2014年第3期34-38,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61174099)
关键词 完全数据似然函数 满条件分布 MCMC方法 GIBBS抽样 Metropolis-Hastings算法 complete-data likelihood function full conditional distribution MCMC method Gibbs sampling Metropolis-Hastings algorithm
  • 相关文献

参考文献15

  • 1Yuan T, Kuo Y. Bayesian analysis of hazard rate, change point, and cost-optimal burn-in time for electronic devices[J]. IEEE Transactions on Reliability, 2010, 59 ( 1 ) : 132 - 138.
  • 2KimJ, Cheon S. Bayesian multiple change-point estimation with annealing stochastic approximation Monte Carlo[J]. Computational Statistics, 2010, 25 ( 2 ): 215 - 239.
  • 3Fearnhead P. Exact and efficient Bayesian inference for multiple changepoint problems[J]. Statistics and Computing, 2006, 16(2): 203 -213.
  • 4Andrews D W K. Tests for parameter instability and structural change with unknown change point[J]. Econometrica, 1993,61(4): 821 -856.
  • 5BaiJ. Estimation of a change point in multiple regression models[J]. Review of Economics and Statistics, 1997, 79 ( 4 ) : 551 - 563 .
  • 6Koren I, Koren Z, Stepper C H. A unified negative-binomial distribution for yield analysis of defect-tolerant circuits[J]. IEEE Transactions on Computers, 1993, 42 ( 6) : 724 - 734.
  • 7Biswas A, HwangJ S. A new bivariate binomial distribution[J]. Statistics & probability letters, 2002, 60 ( 2) : 231 -240.
  • 8Brown L, Li X. Confidence intervals for two sample binomial distribution[J].Journal of Statistical Planning and Inference, 2005, 130(1): 359 - 375.
  • 9Gupta R C, Tao H. A generalized correlated binomial distribution with application in multiple testing problems[J]. Metrika, 2010, 71(1): 59 -77.
  • 10Balakrishnan N, Mitra D. Likelihood inference for lognormal data with left truncation and right censoring with an illustration[J].Journal of Statistical Planning and Inference, 2011, 141 (11) : 3536 - 3553.

同被引文献21

  • 1Lu W, Shi D. A new compounding life distribution: The Weibull-Poisson distribution[ J]. Journal of Applied Sta-tistics, 2012, 39(1): 21 -38.
  • 2Barreto-Souza W, Cribari-Neto F. A generalization of the exponential-Poisson distribution [ J ]. Statistics & Proba- bility Letters, 2009, 79 (24) : 2493 - 2500.
  • 3Poisson S D. Recherehes sur la probabilit6 des jugements en matire criminelle et en matibre civile, prrcrdres des rbgles grnrrales du calcul des probabilitrs [ M ]. Paris: Bachelier, 1837.
  • 4Consul P C, Jain G C. A generalization of the Poisson distribution[ J ]. Technometrics, 1973, 15 (4) : 791 - 799.
  • 5Cohen A C. Estimating the parameter in a conditional Poisson distribution[ J ]. Biometrics, 1960, 16 (2) : 203 -211.
  • 6Colchero F, Clark J S. Bayesian inference on age-specific survival for censored and truncated data [ J ]. Journal of Animal Ecology, 2012, 81 ( 1 ) : 139 - 149.
  • 7Balakrishnan N, Mitra D. Likelihood inference for log- normal data with left truncation and right censoring with an illustration[J]. Journal of Statistical Planning and In- ference, 2011, 141(11) : 3536 -3553.
  • 8Cosslett S R. Efficient semiparametric estimation of cen- sored and truncated regressions via a smoothed self-con- sistency equation [ J ]. Econometrica, 2004, 72 (4) : 1277 - 1293.
  • 9Ahmadi J, Doostparast M, Parsian A. Estimation with left-truncated and right censored data: A comparison study [ J ]. Statistics & Probability Letters, 2012, 82 (7) : 1391 - 1400.
  • 10Gross S T, Lai T L. Nonparametric estimation and regres- sion analysis with left-truncated and right-censored data [J ]. Journal of the American Statistical Association, 1996, 91(435) : 1166 - 1180.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部