期刊文献+

基于多核异构的代数多重网格的并行算法实现 被引量:1

Parallel Algebraic Multigrid Algorithm Based on Heterogeneous and Multicore
下载PDF
导出
摘要 近年来,受GPU其高浮点峰值性能的提高和应用领域中大规模科学计算问题的驱动,高性能领域中利用代数多重网格(AMG)求解稀疏线性方程组成为研究热点。针对经典的AMG算法,探究建立阶段(网格粗化)和求解阶段的并行计算结构,提出基于多核异构的AMG并行计算模式。数值实验表明,并行计算模式计算效率相对于串行提高了3~4倍,加速效果明显。 In recent years, the research of Algebraic Multigrid (AMG) for solving sparse linear equations becomes focus in high-performance field, by the driving of improvements of GPU' s high peak floating point performance and application in the field of large-scale scientific computing problem. In this paper, we research the parallel architecture of establishment phase and solution phase for the classical AMG algorithm, and Proposed the parallel computing mode based on Heterogeneous and Multicore. Numerical experiments show that the parallel computing model improves efficiency,it has 3-4 times acceleration relativing to the serial.
出处 《科学技术与工程》 北大核心 2014年第14期120-124,共5页 Science Technology and Engineering
基金 国家自然科学基金(41174099) 山东省自然科学基金(ZR2013DM015) 中央高校基本科研业务费专项项目(11CX04059A) 中央高校基本科研业务费专项项目(13CX06192A) 国家大学生创新性实验项目(111042557)资助
关键词 代数多重网格 并行计算 多核异构 GPU algebraic muhigrid parallel computing heterogeneous and muhicore GPU
  • 引文网络
  • 相关文献

参考文献6

  • 1Briggs W L, McCormick S F.A muhigrid tutorial.Siam :2000.
  • 2Falgout R D.An introduction to algebraic muhigrid.Computing in Sci- ence and Engineering, 2006; 8(6) : 24-33.
  • 3李佳佳,张秀霞,谭光明,等.代数多重网格在GPU上的优化研究.2011年全国高性能计算学术年会(HPCchina2011)论文集,2011:1-7.
  • 4徐小文,莫则尧.一种新的并行代数多重网格粗化算法[J].计算数学,2005,27(3):325-336. 被引量:7
  • 5Briggs W L, Henson V E, McCormick S" F.A muhigrid tutorial SIAM.Philadelphia, PA, 2000.
  • 6Brezina M, Cleary A J, Falgout R D, et al.Algebraic muhigrid based on element interpolation (AMGe).SIAM Journal on Scientific Com- puting, 2001 ; 22(5) : 1570-1592.

二级参考文献17

  • 1Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E., Coarse-grid Selection for parallel Algebraic Multigrid, in Proceedings of the “fifth international symposium on solvingirregularly structured problems in parallel”, Lecture Notes in Computer Science 1457,Springer-Verlag, New York, (1998), 104-115.
  • 2Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E., Manteuffel, T.A., McCormick, S.F.,Miranda, G.N., Ruge, J.W., Robustness and Scalability of Algebraic Multigrid, SIAM J.Sci. Comp., 21:5(2000), 1886-1908.
  • 3Henson, V.E., Yang, U.M., BoomerAMG: a Parallel Algebraic Multigrid Solver and Preconditioner, Applied Numerical Mathematics, 41(2002), 155-177.
  • 4hypre: High performance preconditioners, http://www.llnl.gov/CASC/hypre.
  • 5Jones, M.T., Plassman, P.E., A Parallel Graph Coloring Heuristic, SIAM, J. Sci Comp..14 (1993), 654-669.
  • 6Jones, J.E. and McCormick, S.F., Parallel multigrid methods, In Keyes,Sameh and Venkatakrishnan,editors, Parallel Numerical Algorithms, 203-224. Kluwer Academic, (1997).
  • 7Krechel, A., Stuben, K., Parallel Algebraic Multigrid Based on Subdomain Blocking, GMD Report 71, Nov (1999).
  • 8Luby, M., A simple parallel algorithm for the maximal independent set problem, SIAM J.Sci. Comp., 15 (1986), 1036-1053.
  • 9莫则尧.[D].长沙:国防科技大学计算机系,(1997).
  • 10Stuben, K., Algebraic Multigrid(AMG): An Introduction with Applications, GMD Report 70, Nov, (1999), also available as an appendix in the book “Multigrid” by U.Trottenberg,C.W.Oosterlee, A.Schuller, Academic Press, (2001), 413-532.

共引文献6

同被引文献32

  • 1孙杜杜,舒适.求解三维高次拉格朗日有限元方程的代数多重网格法[J].计算数学,2005,27(1):101-112. 被引量:17
  • 2徐小文,莫则尧.一种新的并行代数多重网格粗化算法[J].计算数学,2005,27(3):325-336. 被引量:7
  • 3Ruge J W and Stüben K.Algebraic multigrid(AMG)[J].in Multigrid Methods,S.F.McCormick,ed.,vol.3 of Frontiers in Applied Mathematics,SIAM,Philadelphia,PA,1987,73-130.
  • 4Vaněk P,Mandel J and Brezina M.Algebraic multigrid based on smoothed aggregation for second and fourth order elliptic problems[J].Computing,1996,56(3):79-196.
  • 5Notay Y.An aggregation-based algebraic multigrid method[J].Electronic transactions on numerical analysis,2010,37(6):123-146.
  • 6Hypre software and documentation available at https://computation.llnl.gov/casc/linear_solvers/sls_hypre.htm.
  • 7Falgout R D and Yang U M.hypre:a library of high performance preconditioners.In Sloot,P.,Tan.,C.,Dongarra,J.,and Hoekstra,A.,editors,Computational Science-ICCS2002Part Ⅲ,volume2331of Lecture Notes in Computer Science,pages632-41.Springer Berlin Heidelberg,(2002).Also available as LLNL Technical Report UCRL-JC-146175.
  • 8Stüben K.Algebraic Multigrid(AMG):An Introduction with Applications[M],GMD Report70,Nov,(1999),also available as an appendix in the book "Multigrid" by U.Trottenberg,C.W.Oosterlee,A.Schuller,Academic Press,2001,413-532.
  • 9Henson V E and Yang U M.BoomerAMG:a parallel algebraic multigrid solver and preconditioner[J].Applied Numerical Mathematics,2002,41(1):155-177.Also available as LLNL technical report UCRL-JC-141495.
  • 10Cleary A J,Falgout R D,Henson V E,Jones J E.Coarse-grid Selection for parallel Algebraic Multigrid[M].in Proceedings of the "fifth international symposium on solving irregularly structured problems in parallel",Lecture Notes in Computer Science1457,Springer-Verlag,New York,1998,104-115.

引证文献1

二级引证文献1

;
使用帮助 返回顶部