期刊文献+

一种改进的SIFT图像特征匹配算法 被引量:15

Improved SIFT image feature matching algorithm
下载PDF
导出
摘要 针对传统SIFT图像特征匹配算法因其特征描述算子维度过高而造成的计算量大、实时性差的问题,提出一种基于内核投影的改进SIFT图像特征匹配算法。传统SIFT特征匹配算法采用平滑加权直方图计算特征点的梯度模值和梯度方向。采用内核投影算法对其进行改进,使生成的特征描述算子的维度降低,从而能够提高特征匹配效率。实验结果表明,改进后的SIFT算法具有较高的匹配精度,同时匹配时间有所减少,使实时性得到提高。 Aiming at the problem that high dimension of SIFT feature description operator causes large calculating scale and high complexity in SIFT image feature matching algorithm, this paper proposes an improved SIFT image feature matching algorithm based on kernel projection. Instead of using smoothed weighted histograms to calculate gradient modulus and gradient orientations, this paper proposes an improved scheme based on kernel projection. It reduces the dimension of SIFT feature description and improves the efficiency of feature matching. Experimental result proves that the improved algo-rithm has higher matching accuracy and has less matching time, and it has higher instantaneity.
作者 张永 武玉建
出处 《计算机工程与应用》 CSCD 2014年第9期167-169,175,共4页 Computer Engineering and Applications
关键词 尺度不变特征变换(SIFT) 图像匹配 特征描述算子 内核投影 Scale Invariant Feature Transform(SIFT) image matching feature description kernel projection
  • 相关文献

参考文献10

二级参考文献39

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 3Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 4Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 5Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 6Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.
  • 7Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 8Herkkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.
  • 9Lowe D G. Distinctive Image Features from Scale-invariant Key- points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10BHATFI A, NAHAVANDI S, ZHENG H. Image Matching using T1 Multi-Wavelet Transform[ A]. Proc VIlth Digital Image Computing: Techniques and Applications, SUN C, TALBOT H, OURSELIN S,et al. (Eds) [ C], 2003.10 - 12.

共引文献150

同被引文献128

  • 1李晖晖,郭雷,刘航.基于互补信息特征的SAR与可见光图像融合研究[J].计算机科学,2006,33(4):221-224. 被引量:5
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3李伟,沈振康,李飚.基于蚁群算法的仿射变换参数求解[J].红外技术,2007,29(11):662-665. 被引量:5
  • 4Schmid C, Mohr R , Bauckhage C. Comparing and evaluating interest points[C]// ICCV, 1998: 230-235.
  • 5Chiang M C, Boult T E. Efficient image warping and super-resolution[C]//IEEE Workshop on Applications of Computer Vision (WACV\'96), Sarasota, Florida, IEEE Computer Society.1996: 56-61.
  • 6Rosenfeld A. Computer vision: A source of models for biological visual process[J]. IEEE Trans on Biomed Eng, 2009, 36(1):83-94.
  • 7Jungpil Shin, Yu Tang. Deghosting for image stitching with automatic content-awareness [J] . Pattern Recognition, 2010, 23(26):26-27.
  • 8Liu Yiming, Chen Lifang, Liu Yuan. An image matching algorithm based on SIFT and improved LTP [C]//2013 Ninth International Conference on Computational Intelligence and Security (CIS), 2013: 432--436.
  • 9Qiu Weichao, Wang Xinggang, Xiang Bai et al. SIFT: low-complexity energy-efficient information flow tracking on SMT processors [C]//2014 IEEE Winter Conference on Applications of Computer Vision (WACV), 2014: 484-- 496.
  • 10Wang Bingjie, Liang Wei, Wang Yucheng et al. Head pose estimation with combined 2D SIFT and 3D HOGfeatures[C]//2013 Seventh International Conference on Image and Graphics (ICIG), 2013:650--655.

引证文献15

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部