摘要
在语音识别特征提取过程中,为克服传统自相关法在计算特征参数时实时性较差的缺点,提出一种用于提取频率规整线性预测系数(WLPC)的自适应最小均方误差(LMS)算法。该方法通过自适应LMS技术,不仅能提取出符合人耳的听觉特性的特征参数,而且实现了对WLPC系数的实时提取。实验采用DTW(动态时间规整)算法,对比了自相关法WLPC预测误差和自适应法WLPC两种特征参数对孤立词识别率的影响结果和预测误差,结果证明了采用该算法具有较高的分类准确率和良好的时间性能。
To overcome the disadvantages that the traditional autocorrelation algorithm has a poor performance in real-time extraction, an adaptive Least Mean Square(LMS)algorithm which is used to extract WLPC coefficients is presented. Based on an adaptive LMS algorithm, the proposed algorithm not only realizes the real-time extraction of the feature parameters which accord with characteristics of human hearing, but also extracts WLPC coefficients in real-time. A speech recognition model based on DTW algorithm is used to estimate the performance of autocorrelation algorithm and adaptive LMS algorithm. The experimental results demonstrate that the proposed algorithm has high classification accuracy and good real-time performance.
出处
《计算机工程与应用》
CSCD
2014年第9期214-218,共5页
Computer Engineering and Applications
基金
国家自然科学基金(No.61271352)
安徽省高校优秀青年基金项目(No.2012SQRL199ZD)
安徽省教育厅自然科学基金项目(No.KJ2013B285
No.KJ2012Z400
No.KJ2012Z401)