期刊文献+

可重用多属性多等级门限秘密共享 被引量:4

Reusable multi-attributes hierarchical threshold scheme
下载PDF
导出
摘要 多等级门限秘密共享策略是用来解决具有多等级访问结构的秘密共享问题。多等级访问结构是将所有参与者根据其权限或职位高低分割成不同的层次,并在恢复秘密时,对各等级参与人数都有一定门限要求的结构。在以前的多等级门限策略中,划分参与者集合都是基于单一的用户属性。在实际情况中,参与者通常会有多种属性,并且为了满足一些更高级别的安全需求,系统更希望基于多种属性对参与者集合进行划分。虽然对多等级秘密共享策略的研究已经非常深入,但是现存的秘密共享策略几乎无法解决上述问题。基于Tassa提出的基于Birkhoff插值法的多等级门限秘密共享策略和Mignotte提出的基于中国剩余定理的秘密共享策略,提出了一种用户秘密份额可重复使用的基于多属性划分的多等级门限秘密共享策略。 A hierarchical threshold scheme is used to solve the secret sharing with a hierarchical access structure where participants are partitioned into different levels. In a hierarchical access structure, the participants group is divided into different levels based on the privilege, and a certain number of participants from each level are required to recover the secret. In the past hierarchical threshold schemes, participants are partitioned based on a single attribute. But in practice, each participant always has several attributes, and the group of participants always should be partitioned based on different attributes to satisfy the security requirements. Even though hierarchical threshold schemes have been studied extensively in the past years, few of the existing solutions can solve the above problem. A reusable multi-attributes hierarchical threshold scheme based on Tassa’s scheme which uses Birkhoff interpolation, and Mignotte’s scheme which uses Chinese Remainder Theorem, is proposed to solve this problem in this paper.
出处 《计算机工程与应用》 CSCD 2014年第10期7-10,71,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.51108060 No.50921001 No.90815022 No.61100194) 十二五国家科技支撑计划重点项目(No.2011BAK02B01) 中央高校基本科研基金(No.DUT12JR13 No.DUT12RC(3)80)
关键词 多属性 多等级门限策略 Birkhoff插值法 中国剩余定理 multi-attributes hierarchical threshold scheme Birkhoff interpolation Chinese Remainder Theorem
  • 相关文献

参考文献15

  • 1Sharnir A.How to share a secret[J].Communications of the ACM, 1979,22( 11 ) : 612-613.
  • 2Blakley G.Safeguarding cryptographic keys[C]//Proceedings AFIPS 1979 National Conference, 1997:313-317.
  • 3Simmons G J.How to(really) share a secret[C]//LNCS 403: Advances in Cryptology CRYPTO' 88,1990 : 390-448.
  • 4Brickell E F.Some ideal secret sharing schemes[J].Journal of Combinatorial Mathematics and Combinatorial Com- puting, 1989(6) : 105-113.
  • 5Tassa T.Hierarchical threshold secret sharing[J].Joumal of Cryptology, 2007,20(2) : 237-264.
  • 6Basu A,Sengupta I, Sing J K.Secured hierarchical secret sharing using ECC based signcryption[J].Security Com- munication Networks, 2012,5 (7) : 752-763.
  • 7Tentu A N, Paul P,Venkaiah V Ch.Ideal and perfect hier- archical secret sharing schemes[J].IACR Cryptology ePrint Archive, 2013.
  • 8Farras O, Padro C.Ideal hierarchical secret sharing schemes[J]. IEEE Transaction on Information Theory, 2012, 58(5): 3273-3286.
  • 9Farras O,Farre J M,Padro C.Ideal Multipartite secret sharing schemes[J].Journal of Cryptology, 2012, 25 (3) :434-463.
  • 10Mignotte M.How to share a secret[C]//LNCS 149:Pro- ceedings of the Workshop on Cryptography, 1983:371-375.

同被引文献39

  • 1GENNARO R,JARECKI S,KRAWCZYK H,et al.Secure distributed key generation for discrete-log based cryptosystems[J].Journal of Cryptology,2007,20(1):51-83.
  • 2PEDERSEN T.A threshold cryptosystem without a trusted party[C]//EUROCRYPT 1991:Proceedings of the 1991 Workshop on the Theory and Application of Cryptographic Techniques.Berlin:Springer,1991:522-526.
  • 3YUAN H,ZHANG F,HUANG X,et al.Certificateless threshold signature scheme from bilinear maps[J].Information Sciences,2010,180(23):4714-4728.
  • 4HERRANZ J,RUIZ A,SáEZ G.Signcryption schemes with threshold unsigncryption,and applications[J].Designs,Codes and Cryptology,2014,70(3):1-23.
  • 5BUDURUSHI J,NEUMANN S,OLEMBO M,et al.Pretty understandable democracy-a secure and understandable Internet voting scheme[C]//Proceedings of the 2013 Eighth IEEE International Conference on Availability,Reliability and Security.Piscataway,NJ:IEEE,2013:198-207.
  • 6BASU A,SENGUPTA I,SING J K.Secured hierarchical secret sharing using ECC based signcryption[J].Security Communication Networks,2012,5(7):752-763.
  • 7TENTU A N,PAUL P,VENKAIAH V C.Ideal and perfect hierarchical secret sharing schemes[J].IACR Cryptology Eprint Archive,2013,3(4):23-32.
  • 8FARRAS O,PADRO C.Ideal hierarchical secret sharing schemes[J].IEEE Transactions on Information Theory,2012,58(5):3273-3286.
  • 9SIMMONS G J.How to (really) share a secret[C]//Proceedings of CRYPTO 1988,LNCS 403.Berlin:Springer,1990:390-448.
  • 10BRICKELL E F.Some ideal secret sharing schemes[C]//EUROCRYPT 1989:Proceedings of the 1989 Workshop on the Theory and Application of Cryptographic Techniques,LNCS 434.Berlin:Springer,1990:468-475.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部