期刊文献+

求解非线性方程的混合人工蜂群算法 被引量:5

Hybrid artificial bee colony algorithm for solving nonlinear equation
下载PDF
导出
摘要 结合牛顿法和人工蜂群算法的优点,提出了一种混合人工蜂群算法(HABC),用于求解非线性方程,以克服牛顿法对初始值敏感和人工蜂群算法容易陷入局部极值、收敛速度慢的缺陷。实验仿真结果表明,混合人工蜂群算法能以满意的精度求出对未知数具有敏感性的非线性方程的解,具有较快的收敛速度和较高的搜索精度。 A Hybrid Artificial Bee Colony(HABC)algorithm, which combines the advantages of newton method and artificial bee colony algorithm, is put forward to solve nonlinear equation, and it can be used to overcome the difficulty in selecting good initial guess for newton method and inaccuracy of ABC due to being easily trapped into local optimal. Numerical computations show that the approach has high convergence rate and precision, and it can give satisfactory solutions.
出处 《计算机工程与应用》 CSCD 2014年第10期48-51,共4页 Computer Engineering and Applications
关键词 人工蜂群算法 非线性方程 牛顿法 artificial bee colony algorithm nonlinear equation Newton method
  • 相关文献

参考文献22

  • 1Ostrowski A M.Solutions of equations and system of equa- tions[M].New York: Academic Press, 1960.
  • 2Potra F A,Ptak V.Nondiscrete introduction and iterative processes[J] .Research Notes in Mathematics, Pitman, Boston, 1984, 103.
  • 3Homeier H H H.On Newton-type methods with cubic con- vergence[J].Comput Appl Math, 2005,176 ( 2 ) : 425-432.
  • 4Sharma J R.A composite third order Newton-Steffensen method for solving nonlinear equations[J].Appl Math Corn- put, 2005,169( 1 ) :242-246.
  • 5Traub J EIterative Methods for the solution of equations[M]. New Jersey:Prentice Hall, 1964.
  • 6Zheng Q,Zhao P,Zhang L,et al.Variants of Steffensen- secant method and applications[J].Appl Math Comput, 2010,216(12) :3486-3496.
  • 7Li X,Mu C,Ma J,et al.Fifth-order iterative method for finding multiple roots of nonlinear equations[J].Nuiner Algor, 2011,57 ( 3 ) : 389-398.
  • 8Ren H, Wu Q, Bi W.A class of two-step Steffensen type methods with fourth-order convergence[J].Appl Math Corn- put, 2009,209: 206-210.
  • 9Cordero A, Torregrosa J R.A class of Steffensen type methods with optimal order of convergence[J].Appl Math Comput, 2011,217(19) :7653-7659.
  • 10Liu Z, Zheng Q, Zhao P.A variant of Steffensen' s method of fourth-order convergence and its applications[J].Appl Math Comput,2010,216(7) : 1978-1983.

二级参考文献42

  • 1刘锋,陈国良,吴昊.基于遗传算法的方程求根算法的设计和实现[J].控制理论与应用,2004,21(3):467-469. 被引量:5
  • 2田明俊,周晶.岩土工程参数反演的一种新方法[J].岩石力学与工程学报,2005,24(9):1492-1496. 被引量:40
  • 3张建科,王晓智,刘三阳,张晓清.求解非线性方程及方程组的粒子群算法[J].计算机工程与应用,2006,42(7):56-58. 被引量:37
  • 4高飞,童恒庆.一类求解方程根的改进粒子群优化算法[J].武汉大学学报(理学版),2006,52(3):296-300. 被引量:8
  • 5J M 奥特加,W C 莱因博尔特.多元非线性方程组迭代解法[M].北京:科学出版社,1983.
  • 6R C Ebethart,J Kennedy.A new optimizer using particle swarm theory[C].In:Proc of the 6th Int'1 Symposium on Micro Machine and Human Science,Piscataway NJ:IEEE Service Center,1995.9-43.
  • 7Traub J F. Iterative Methods for the Solution of Equations [ M ].Englewood Cliffs: Prentice-Hall, 1964.
  • 8Frontini M, Sormani E. Some Variants of Newton' s Method with Third-Order Convergence [ J ]. Appl Math Comput, 2003, 140(2/3) : 419-426.
  • 9Burden R L, Faires J D. Numerical Analysis [ M]. Pacific Grove: Brooks Cole, 2001.
  • 10Amat S, Busquier S, Guti6rrez J M. Geometric Constructions of Iterative Functions to Solve Nonlinear Equations [ J ]. J Comput Appl Math, 2003, 157: 197-205.

共引文献55

同被引文献39

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部