期刊文献+

基于局部特征约束的压缩感知人脸识别算法研究

Title Compressive Sensing Based on Constraint Local Feature for Face Recognition
下载PDF
导出
摘要 人脸识别是计算机模式识别领域中一个研究热点和难点。针对人脸识别中数据量大、高维度、非线性等问题,提出基于局部特征约束的压缩感知人脸识别方法。首先对人脸图像进行选择性约束处理,利用SIFT算法提取人脸图像中的局部特征,以此构成压缩感知算法中的测量矩阵,再利用压缩感知的重构算法计算特征的稀疏表示,在此基础上进行人脸识别。算法在AR人脸库上进行了抗干扰比对测试,实验结果验证了算法对光照、表情以及遮挡等干扰具有强的鲁棒性,局部特征的约束大大降低了特征点的数量,有效提高了人脸识别的正确率。 For the big data, high dimension and nonlinear problems in face recognition, this paper propose a new face recogni-tion method based on compressive sensing with constraint local feature. First process constraint on image, then extract local fea-tures with SIFT method and form a measure matrix, finally we can calculate sparse represent through CS. In this paper, to verify the performance of algorithm do experiments on AR database. Results shows that algorithm can effectively reduce the amount of feature, and have high robustness to illumination, expression and block. Algorithm improves rate of face recognition effectively.
作者 罗聪 刘斌 魏梦然 LUO Cong, LIU Bin, WEI Meng-ran ( Department of Computer Science,Tongji University, Shanghai 201804, China)
出处 《电脑知识与技术》 2014年第3期1500-1504,共5页 Computer Knowledge and Technology
关键词 压缩感知 人脸识别 特征提取 局部特征 SIFT算法 compressive sensing face recognition feature extraction local feature SIFT
  • 相关文献

参考文献16

  • 1TURK M,PENTI,AND A. Face recognition using eigenfaces[C].Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D C:IEEE Computer Society Press, 1991:586-591.
  • 2Belhumeur P,Hespanha J,KriegmanD. Eigenfaces VS. Fisherfaces: Recognition using class specific linear projection[C].IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 3CandeE. Compressive Sampling[C] Proc. Int'l Congress of Mathematicians.2006.
  • 4Donoho D L. For most large underdetermined systems of linear equations, the minimal 11-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
  • 5Donoho.Compressed sensing[J]. IEEE Trans Inform Theory,2006,52(4):1289-1306.
  • 6John Wright,Allen Y. Yang,ArvindGanesh,S. Shankar Sastry, YiMa. Robust Face Recognition via Sparse Representation [J].IEEE Transactions on pattern analysis and machine intelligence, 2009,31(2):210-227.
  • 7TanayaGuha, Rabab Kreidieh Ward. Learning Sparse Representations for Human Action Recognition[J].IEEE Transactions on pattern analysis and machine intelligence, 2012, 34 (8): 1576-1588.
  • 8Ran He,Wei-Shi Zheng,Bao-Gang Hu, Xiang-Wei Kong. Two-Stage on negative Sparse Representation for Large-Scale Face Recog- nition[J].IEEE Transactions on neural networks and learning systems, 2013, 24(1) :35-46.
  • 9Koji Inoue, Yoshimitsu Kuroki. Illumination-Robust Face Recognition via Sparse Representation[C].IEEE conference of Visual Com- munications and Image Processing, 2011, 1-4.
  • 10Chih-Hsueh Duan, Chen-Kuo Chiang, Shang-Hong Lai. Face Verification With Local Sparse Representation[J].IEEE signal process- ing letters,2013,20(2): 177-180.

二级参考文献12

  • 1王娜,李霞.一种新的改进Canny边缘检测算法[J].深圳大学学报(理工版),2005,22(2):149-153. 被引量:77
  • 2王磊,莫玉龙,戚飞虎.基于Canny理论的边缘提取改善方法[J].中国图象图形学报(A辑),1996,1(3):191-195. 被引量:42
  • 3Canny J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679- 698.
  • 4Haralick R.Digital step edges from zero crossing of second directional derivatives[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1984,6(1):58- 68.
  • 5Worthington P L.Enhanced Canny edge detection using curvature consistency[A].Proceedings of International Conference on Pattern Recognition[C].USA:IEEE Computer Society Press,2002:596-599.
  • 6章毓晋.图象处理和分析[M].北京:清华大学出版社,1999..
  • 7CANNY J. A computational approach to edge detection. IEEE-PAMI, 1983.
  • 8Worthington P L.一种基于曲线连续性的改进Canny边缘检测算法[A].模式识别国际会议[C],美国IEEE计算机学会出版社,2002.5962599(英文版).
  • 9洪文松,陈武凡.实现图象边缘检测的改进广义模糊算子法[J].中国图象图形学报(A辑),1999,4(2):143-146. 被引量:21
  • 10魏海,沈兰荪.反对称双正交小波应用于多尺度边缘提取的研究[J].电子学报,2002,30(3):313-316. 被引量:107

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部