期刊文献+

基于高斯混合模型的结核菌图像检测 被引量:2

Detection of Tuberculosis in Sputum Smear Images by Gaussian Mixture Models
下载PDF
导出
摘要 结核病是严重危害人类健康的一类疾病。通过计算机图像处理手段进行自动检测结核菌计数可以大幅提高医生诊断效率。高斯混合模型是单一高斯分布的延伸,是使用多个高斯分布加权来拟合给定的数据样本,通过确定拟合参数确定每个样本的分类概率。该文首先通过向量量化算法对图像预处理,降低所需处理数据量,然后从HSV、CIEL*a*b*、YCbCr颜色空间提取特征分量并送入高斯混合模型进行训练。根据实验结果,高斯混合模型比其他无监督分类算法(如K-means算法)准确度更高,与有监督的分类算法(如朴素贝叶斯分类算法)相比可以简化训练样本的制作,具有一定优势。 Cell recognition plays an important role in medical image-processing.First,we preprocess the images with vector quantization algorithm to reduce the computation.Then we extract different feature channels from HSV,CIEL*a*b* and YCbCr color spaces and put them into a Gaussian mixture model.Gaussian mixture models is a mature method for clustering unknown data.To determine the parameters of GMM,we use expectation maximization algorithm,which uses unlabeled data for model training.The experiment shows GMM finished the initial work of TB detection,while its performance wasn't high enough.
作者 王旭 鞠颖 WANG Xu, JU Ying (School of Information Science and Technology, Xiamen University,Xiamen 361005 China)
出处 《电脑知识与技术》 2014年第4期2363-2366,2377,共5页 Computer Knowledge and Technology
基金 基于前节OCT图像的闭角型青光眼诊断及治疗仿真方法研究
关键词 结核菌 痰涂片 高斯混合模型 最大期望 Tuberculosis Sputum Smear Gaussian Mixture Models Expectation Maximization
  • 相关文献

参考文献5

  • 1Global Tuberculosis Colltrol: WHO Report 2010[M]. World Health Organization,2010.
  • 2翟永平,周东翔,刘云辉.基于颜色及梯度统计特征的结核杆菌目标识别[J].国防科技大学学报,2012,34(5):146-152. 被引量:11
  • 3KHUTIANG R, KRISHNAN S, DENDERE R 等人. Classification of Mycobacterium tuberculosis in Images of ZN-Stained Sputum Smears[J]. IEEE Transactions on Information Technology in Biomedicine, 2010,14(4):949-957.
  • 4FORERO M G, CRISTOBAL G, M. DESCO. Automatic identification of Mycobacteriam tuberculosis by Gaussian mixture models[J]. Journal of Microscopy,2006,223(2): 120-132.
  • 5Vector quantization[J]. Wikipedia, the free encyclopedia,2014.

二级参考文献13

  • 1World Health Organization, Global tuberculosis control- epidemiology, strategy, financing [ M]. Geneva, Switzerland, WHO Press ,2009.
  • 2Zhai Y P, Liu Y H, Zhou D X, et al. Automatic identification of mycobacterium tuberculosis from ZN-stained sputum smear:Algorithm and system design [ C ]//Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBI02010). Tianjin,2010:41 - 46.
  • 3Veropoulos K, Campbell C, Learmonth G,et al. The automatic identification of tubercle bacilli using image processing anti neural computing techniques [ C ]//Proceedings of the Eighth International Conference on Artificial Neural Networks, 1998, 2:797 - 802.
  • 4Veropoulos K, Campbell C, Learmonth G, et al. The Automated identification of tubercle bacilli in sputum - a preliminary investigation [ J ]. Analytical and Quantitative Cytology and Histology, 1999, 21 (4) :277 -281.
  • 5Forero M, Sierra E, Alvarez J, et al. Automatic sputum color image segmentation for tuberculosis diagnosis [ C ]// Proceedings of the SPIE, San Diego, 2001 : 251 261.
  • 6Forero M, Sroubek F, Cristbal G. Identification of tuberculosis bacteria based on shape and color [ J ]. Real-time Imaging, 2004,10(4) : 251 -262.
  • 7Forero M, Sroubek F, Cristbal G. Automatic identification of Mycobacterium tuberculosis by Gaussian Mixture Models [ J ]. Journal of Microscopy, 2006,223 ( 2 ) : 120 - 132.
  • 8Makkapati V, Agrawal R, Acharya R. Segmentation and classification of Tuberculosis Bacilli from ZN-stained sputum smear images [ C ]//Proceedings of 5th Annual IEEE Conference on Automation Science and Engineering Bangalore, India, August, 2009:217 -220.
  • 9Khutlang R, Krishnan S, Dendere R, et al. Classification of Mycobacterium tuberculosis in images of ZN-stained sputum smears[ J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 14(4): 949-957.
  • 10Raof R A A, Salleh Z, Sahidan S I, et al. Color thresholding method for image segmentation algorithm of Ziehl-Neelsen sputum slide images [ C ]//Proceedings of 5th International Conference on Electrical Engineering, Computing Science and Automatic Control ( CCE 2008 ) , Mexico City,2008.

共引文献10

同被引文献26

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部