摘要
科学工作流应用是一种复杂且数据密集型的应用,常应用于结构生物学、高能物理学和神经学等涉及分布式数据源的学科。数据分散存储在基于互联网的云计算平台上,致使科学工作流在执行时伴随着大量的数据传输。云计算是一种按使用量付费的模式,数据传输产生传输费用,尤其在多个工作流相互协同的情况下,将产生更高的传输成本。该文从全局的角度建立基于多工作流数据依赖图的传输成本模型,研究基于二进制粒子群算法(BPSO)的数据布局优化策略,从而减少对云计算传输资源的租赁费用。
Scientific workflow is a complex and data-intensive application.It often used in disciplines related to distributed data sources,such as structural biology,highenergy physics and neurology.Data distribute in Internet-based cloud computing platform,resulting in transferring mass of data by scientific workflow running.Because cloud computing is a pay-per-use model,so data transfer costs incurred.Especiallyin the case of multiplecooperative workflows,datatransmissionwill produce higher costs.Firstly,this paper based on multiple workflow data dependence graphestablish transmissioncost model.Secondly,this paperproposed anew particle swarm optimization-based strategy for cost-effective data layout in multiple scientific cloud workflows.The experimental results show that the strategy is much better than its traditional counterparts.
作者
马飞
MA Fei (School of Computer Science and Technology, Anhui University, Hefei 230601,China)
出处
《电脑知识与技术》
2014年第4期2418-2420,共3页
Computer Knowledge and Technology
关键词
云计算
工作流系统
云工作流
数据布局
二进制粒子群算法
cloud computing
workflow system
cloud workflow
data layout
binary particle swarm optimization algorithm