期刊文献+

多云工作流优化传输费用的数据布局策略

A Cost-Effective Data Layout Strategy for Multiple Scientific Cloud Workflows
下载PDF
导出
摘要 科学工作流应用是一种复杂且数据密集型的应用,常应用于结构生物学、高能物理学和神经学等涉及分布式数据源的学科。数据分散存储在基于互联网的云计算平台上,致使科学工作流在执行时伴随着大量的数据传输。云计算是一种按使用量付费的模式,数据传输产生传输费用,尤其在多个工作流相互协同的情况下,将产生更高的传输成本。该文从全局的角度建立基于多工作流数据依赖图的传输成本模型,研究基于二进制粒子群算法(BPSO)的数据布局优化策略,从而减少对云计算传输资源的租赁费用。 Scientific workflow is a complex and data-intensive application.It often used in disciplines related to distributed data sources,such as structural biology,highenergy physics and neurology.Data distribute in Internet-based cloud computing platform,resulting in transferring mass of data by scientific workflow running.Because cloud computing is a pay-per-use model,so data transfer costs incurred.Especiallyin the case of multiplecooperative workflows,datatransmissionwill produce higher costs.Firstly,this paper based on multiple workflow data dependence graphestablish transmissioncost model.Secondly,this paperproposed anew particle swarm optimization-based strategy for cost-effective data layout in multiple scientific cloud workflows.The experimental results show that the strategy is much better than its traditional counterparts.
作者 马飞 MA Fei (School of Computer Science and Technology, Anhui University, Hefei 230601,China)
出处 《电脑知识与技术》 2014年第4期2418-2420,共3页 Computer Knowledge and Technology
关键词 云计算 工作流系统 云工作流 数据布局 二进制粒子群算法 cloud computing workflow system cloud workflow data layout binary particle swarm optimization algorithm
  • 相关文献

参考文献16

  • 1Gil Y.Examining the challenges of scientific workflows. Ieee computer, 2007,40(12): 26-34.
  • 2Adams I F.Maximizing efficiency by trading storage for computation[C].Proceedings of the 2009 conference on Hot topics in cloud computing,2009.
  • 3Yuan D,et al. A cost-effective strategy for intermediate data storage in scientific cloud workflow systems, in Parallel & Distributed Processing (IPDPS)[C].2010 IEEE International Symposium 2010.
  • 4Fox A,et al.Above the clouds: A Berkeley view of cloud computing. Dept. Electrical Eng. and Comput. Sciences, University of Califor- nia, Berkeley, Rep. UCB/EECS, 2009.28: 13.
  • 5Buyya R,Pandey S,Vecchiola C.Cloudbus toolkit for market-oriented cloud computing[J].Cloud Computing. 2009:24-44.
  • 6Keahey K,et al. Science clouds: Early experiences in cloud computing for scientific applications[J].Cloud computing and applications, 2008:825-830.
  • 7Wang L, et al. Scientific Cloud Computing: Early Definition and Experience[J].HPCC,2008.
  • 8Deelman E, et al. The cost of doing science on the cloud: the montage example[C].Proceedings of the 2008 ACM/IEEE conference on Supercomputing. 2008.
  • 9Hoffa C,et al. On the use of cloud computing for scientific workflow[C].eScience, 2008. eScience'08. IEEE Fourth International Confer- ence on. 2008.
  • 10Simmhan Y L, B. Plale, D. Gannon.A survey of data provenance in e-science[C].ACM Sigmod Record, 2005,34(3): 31-36.

二级参考文献15

  • 1Deelman E,Chervenak A.Data management challenges of data-intensive scientific workflows//Proceedings of the IEEE International Symposium on Cluster Computing and the Grid(CCGRID).Lyon,France,2008:687-692.
  • 2Deelman E,Blythe J,Gil Y,Kesselman C,Mehta G,Patil S,Su M H,Vahi K,Livny M.Pegasus:Mapping scientific workflows onto the grid//Proceedings of the European Across Grids Conference(AxGrids).Nicosia,Cyprus,2004:11-20.
  • 3Ludascher B,Altintas I,Berkley C,Higgins D,Jaeger E,Jones M,Lee E A.Scientific workflow management and the Kepler system.Concurrency and Computation:Practice and Experience,2005,18(10):1039-1065.
  • 4Oinn T,Addis M,Ferris J,Marvin D,Senger M,Greenwood M,Carver T,Glover K,Pocock M R,Wipat A,Li P.Taverna:A tool for the composition and enactment of bioinformatics workflows.Bioinformatics,2004,20(17):3045-3054.
  • 5Ghemawat S,Gobioff H,Leung S T.The google file system.ACM SIGOPS Operating Systems Review,2003,37(5):29-43.
  • 6Wang L,Tao J,Kunze M,Castellanos A C,Kramer D,Karl W.Scientific cloud computing:Early definition and experience//Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications(HPCC).Dalian,China,2008:825-830.
  • 7Wieczorek M,Prodan R,Fahringer T.Scheduling of scientific workflows in the ASKALON grid environment.SIGMOD Record,2005,34(3):56-62.
  • 8Baru C,Moore R,Rajasekar A,Wan M.The SDSC storage resource broker//Proceedings of the IBMCentre for Advanced Studies Conference.Toronto,Canada,1998:1-12.
  • 9Churches D,Gombas G,Harrison A,Maassen J,Robinson C,Shields M,Taylor I,Wang I.Programming scientific and distributed workflow with Triana services.Concurrency and Computation:Practice and Experience,2006,18:1021-1037.
  • 10Chervenak A,Deelman E,Foster I,Guy L,Hoschek W,Iamnitchi A,Kesselman C,Kunszt P,Ripeanu M,Schwartzkopf B,Stockinger H,Stockinger K,Tierney B.Giggle:A framework for constructing scalable replica location services//Proceedings of the ACM/IEEE Conference on Supercomputing.Baltimore,Maryland,USA,2002:1-17.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部