期刊文献+

基于无监督提取表情时空特征的情感识别

Emotion Recognition Based on Unsupervised Extraction of Facial Expression Spatio-temporal Features
下载PDF
导出
摘要 情感识别是解决智能教学系统中情感缺失问题的关键技术。针对识别时如何从视频中有效提取人脸表情时空特征的问题,提出一种采用堆叠卷积独立子空间分析模型进行无监督特征提取的识别方法,来对疑惑、愉快和厌倦3种学习中最常出现的情感进行识别。该方法检测视频中的人脸区域并进行规范化处理,采用堆叠卷积独立子空间分析模型从视频块中无监督地学习表情的时空特征,采用线性支持向量机进行分类。实验结果表明,相比使用人工特征的方法,该方法能够更有效地提取视频中人脸表情的时空特征,获得更高的识别率,同时符合实时性要求。 Emotion recognition is the key to solving the problem of the absence of emotional communication in intelligent tutoring systems.According to the problem of effective extraction of facial expression spatio-temporal features from videos for emotion recognition,a recognition method based on unsupervised feature extraction using stacked convolutional independent subspace analysis (ISA) model was proposed to recognize three emotions including puzzlement,delight and boredom that most often appear in learning.This method first detects face in video and normalizes it,then adopts stacked convolutional ISA model to learn (without supervision) facial expression spatio-temporal features from video blocks,finally uses linear SVM classifier to recognize different emotions.Experimental results indicate that this method can extract spatio-temporal expression features more effectively than the use of hand-designed features,as well as recognition rate is better,and it meets the requirement of real-time.
出处 《计算机科学》 CSCD 北大核心 2014年第5期266-269,共4页 Computer Science
基金 国家自然基金(61203259 61103074) 天津市自然基金(11JCYBJC00600)资助
关键词 情感识别 无监督学习 独立子空间分析 时空特征 人脸表情 Emotion recognition Unsupervised learning Independent subspace analysis Spatio-temporal feature Facial expression
  • 相关文献

参考文献10

  • 1McDaniel B T,D'Mello S K,King B G,et al.Facial features for affective state detection in learning environments[C]//Proceedings of the 29th Annual Cognitive Science Society Conference,2007.Nashville,TX,USA,Cognitive Science Scciety,2007:467-472.
  • 2Dahmane M,Meunier J.Emotion recognition using dynamic grid-based hog features[C]//Proceedings of IEEE International Conference and Workshop on Automatic Face and Gesture Recognition,2011.IEEE,Santa Barbara,CA,USA,2011:884-888.
  • 3Song Y,Morency L P,Davis R.Learning a sparse codebook of facial and body microexpressions for emotion recognition[C]//Proceedings of the 15th ACM on International conference on multimodal interaction,2013.Sydney,Australia,ACM,2013:237-244.
  • 4Hayat M,Bennamoun M,El-Sallam A.Evaluation of spatiotemporal detectors and descriptors for facial expression recognition[C]//Proceedings of IEEE 5th International Conference on Human System Interactions,2012.IEEE,Perth,West Australia,2012:43-47.
  • 5Schrnidt E M,Kim Y E.Learning emotion-based acoustic features with deep belief networks[C]// Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,2011.IEEE,New Paltz,NY,USA,2011:65-68.
  • 6Vincent P,Larochelle H,Lajoie I,et al.Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J].The Journal of Machine Learning Research,2010,11:3371-3408.
  • 7Le QV,ZouWY,YeungSY,etal.Learninghierarchicalinvariant spatio-temporal features for action recognition with independent subspace analysis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2011.IEEE,Colorado Springs,CO,USA,2011:3361-3368.
  • 8O'Toole A J,Harms J,Snow S L,et al.A video database of moving faces and people[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):812-816.
  • 9Lucey P,Cohn J F,Kanade T,et al.The Extended Cohn-Kanade Dataset(CK+):A complete dataset for action unit and emotion-specified expression[C]//Proceedings of IEEE Workshops on Computer Vision and Pattern Recognition,2010.IEEE,San Francisco,CA,USA,2010:94-101.
  • 10Fan R E,Chang K W,Hsieh C J,et al.LIBLINEAR:A library for large linear classification[J].The Journal of Machine Learning Research,2008,9:1871-1874.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部