期刊文献+

适宜于展开模糊推理的两类模糊度量空间 被引量:7

Two types of fuzzy metric spaces suitable for fuzzy reasoning
原文传递
导出
摘要 给出了衡量模糊推理鲁棒性的度量应有的结构,建立了基于左连续三角模的4类模糊度量空间,证明了基于Lukasiewicz蕴涵和Goguen乘积蕴涵的模糊度量空间是最适宜于展开模糊推理的两类模糊度量空间. The metric structures for measure the robustness of fuzzy reasoning are given. Based on the left continuous triangular norms, four types of fuzzy metric spaces are constructed. Finally, it proved that the fuzzy metric spaces related to Lukasiewicz implication and Goguen implication are more suitable for fuzzy reasoning.
出处 《中国科学:信息科学》 CSCD 2014年第5期623-632,共10页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:11171200) 中央高校特别支持项目(批准号:GK201403001) 宝鸡文理学院重点项目(批准号:ZK14059) 中央高校教师自由探索项目(批准号:GK201402006)资助
关键词 模糊推理 鲁棒性 正则度量 Goguen型蕴涵 Lukasiewicz型蕴涵 fuzzy reasoning robustness, regular metric, Goguen implication, Lukasiewicz implication
  • 相关文献

参考文献15

  • 1王国俊.模糊推理的全蕴涵三I算法[J].中国科学(E辑),1999,29(1):43-53. 被引量:350
  • 2Ying M S. Perturbation of fuzzy reasoning. IEEE Trans Fuzzy Syst, 1999, 7: 625-629.
  • 3Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cy B, 1973, 1 : 28-44.
  • 4Cai K Y. Robustness of fuzzy reasoning and δ-equalities of fuzzy sets. IEEE Trans Fuzzy Syst, 2001, 9: 738-750.
  • 5Li Y M, Li D C, W J J, et al. An approach of measure the robustness of fuzzy reasoning. Int J Intell Syst, 2005, 20: 393-413.
  • 6Li Y F, Qin K Y, He X X. Robustness of fuzzy connectives and fuzzy reasoning. Fuzzy Syst, 2013, 225: 93-105.
  • 7Dai S S, Pei D W, Wang S M. Perturbation of fuzzy sets and fuzzy reasoning based on normalized Minkowski distances. Fuzzy Syst, 2011, 189: 63-73.
  • 8Luo M X, Yao N. Triple I algorithms based on Schweizer-Sklar operators in fuzzy reasoning. Int J Approx Reason, 2013, 54: 640-652.
  • 9金检华,李永明,李春泉.模糊推理系统的鲁棒性[J].模糊系统与数学,2008,22(5):80-91. 被引量:5
  • 10Jin J H, Li Y M, Li C Q. Robustness of fuzzy reasoniog via logically equivalence measure. Inform Sci, 2007, 177: 5103-5117.

二级参考文献41

共引文献357

同被引文献32

  • 1刘刚,刘强.双枝模糊推理框架[J].计算机工程与应用,2004,40(32):102-105. 被引量:5
  • 2刘纪芹,史开泉.双枝模糊集模糊性度量[J].系统工程与电子技术,2007,29(5):732-736. 被引量:2
  • 3ZADEH L A. Fuzzy sets [ J ]. Information and Control, 1965, 8(3): 338-353.
  • 4ATANASSOV K T. Intuitionistic fuzzy sets [ J ]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 5ZADEH L A.Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Transactions Systems,Man and Cybernetics.1973,1:28-44.
  • 6CAI K Y.Robustness of fuzzy reasoning andδ-equalities of fuzzy sets[J].IEEE Transactions on Fuzzy Systems,2001,9(5):750-783.
  • 7LI Y M,LI D C,WITOLD P,et al.An approach of measure the robustness of fuzzy reasoning[J].International Journal of Intelligent Systems,2005,20:393-413.
  • 8JIN J H,LI Y M,LI C Q.Robustness of fuzzy reasoning via logically Equivalence measure[J].Information Sciences,2007,177:5103-5117.
  • 9WANG G J,DUAN J Y.On robustness of the full implication triple I inference method with respect to finer measurements[J].International Journal of Approximate Reasoning,2014,55:787-796.
  • 10KLEMENT E P,MESIAR R,PAP E.Triangular norms[M].Dordrecht:Kluwer Academic Publishers,2000.

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部