摘要
给出了衡量模糊推理鲁棒性的度量应有的结构,建立了基于左连续三角模的4类模糊度量空间,证明了基于Lukasiewicz蕴涵和Goguen乘积蕴涵的模糊度量空间是最适宜于展开模糊推理的两类模糊度量空间.
The metric structures for measure the robustness of fuzzy reasoning are given. Based on the left continuous triangular norms, four types of fuzzy metric spaces are constructed. Finally, it proved that the fuzzy metric spaces related to Lukasiewicz implication and Goguen implication are more suitable for fuzzy reasoning.
出处
《中国科学:信息科学》
CSCD
2014年第5期623-632,共10页
Scientia Sinica(Informationis)
基金
国家自然科学基金(批准号:11171200)
中央高校特别支持项目(批准号:GK201403001)
宝鸡文理学院重点项目(批准号:ZK14059)
中央高校教师自由探索项目(批准号:GK201402006)资助