期刊文献+

具有环境适应能力的蛇形机器人仿生控制方法 被引量:7

The study of snake robots biomimetic control method with the environments adaptability
原文传递
导出
摘要 基于生物学原理,本文构建了一种能够产生蛇形机器人多种仿生步态的多模态中枢模式发生器模型.该模型通过外部激励的引入,可以实现蛇形机器人运动形式的自由调整和转换,有助于提高蛇形机器人的环境适应能力.文中主要针对任意节数的多模态中枢模式发生器模型的稳定性进行了证明;分析了多模态中枢模式发生器模型参数对系统输出的影响;研究了蜿蜒运动中环境参数与蛇形机器人关节最优幅值的对应关系,从而确定了多模态中枢模式发生器幅值优化调整策略;并通过建立外部激励与模型参数之间的约束,使得蛇形机器人在多模态中枢模式发生器控制下具有三维运动能力以及相应的环境适应能力.最后,利用蛇形机器人平台验证了仿生控制方法的有效性以及与生物蛇步态的相似性. Based bionic principle, this paper built a. multi-phase central pattern generator model capable of producing multiply bionic gaits. This model could realize, the arbitrary adjusting and transforming between different movement types of snake robots by introducing external excitatory, which will be helpful 1o improve the environments adaptability of snake robots. In this paper, the stability of arbitrary segments multi-phase pattern generator was proved. The influence of multi-phase central pattern generator model parameters to system outputs was analyzed. For conclude the optimization strategy of central pattern generator outputs amplitude, the relationship between optinal amplitude of snake robots and environments parameters in serpentine locomotion. Constrains between model parameters and external excitatory were built, which enabled snake robots controlled by multi-phase central pattern generator to move in three dimensional space and adapt to environments. Finally, the validity of this bionic control method and the similarity of snake gaits were verified with the snake robot platform.
出处 《中国科学:信息科学》 CSCD 2014年第5期647-663,共17页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61333016)资助项目
关键词 智能机器人 智能控制 自适应控制系统 仿生学 反馈控制 intelligent robots, intelligent control, adaptive control system, bionics, feedback control
  • 相关文献

参考文献21

  • 1Hirose S. Biologically Inspired Robots. Oxford: Oxford University Press, 1993.
  • 2Tanaka M, Matsuno F. Cooperative control of three snake robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006. 3688-3693.
  • 3吴启迪,刘成菊,张家奇,陈启军.生物诱导的机器入行走控制研究进展[J].中国科学(F辑:信息科学),2009,39(10):1080-1094. 被引量:7
  • 4Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review. Neural Netw, 2008, 21: 642-653.
  • 5Heliot R, Espiau B. Multisensor input for CPG-based sensory-motor coordination. IEEE Trans Robot, 2008, 24: 191-195.
  • 6Kimura H, Fukuoka Y, Cohen A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robot Res, 2007, 26: 475-490.
  • 7Arena P, Fortuna L, Frasca M, et al. An adaptive, self-organizing dynamical system for hierarchical control of bioinspired locomotion. IEEE Trans Syst Man Cy B, 2005, 34: 1823-1837.
  • 8Crespi A, Ijspeert A. Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans Robot, 2008, 24: 75-87.
  • 9Sfakiotakis M, Tsakiris D P. Biomimetic centering for undulatory robots. Int J Robot Res, 2007, 26: 1267-1282.
  • 10Lu Z L, Ma S G, Li B, et al. Serpentine locomotion of a snake robot controlled by cyclic inhibitory CPG model. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, 2005. 96-101.

二级参考文献128

  • 1卢振利,马书根,李斌,王越超.基于循环抑制CPG模型控制的蛇形机器人三维运动[J].自动化学报,2007,33(1):54-58. 被引量:15
  • 2Hirose S. Biologically Inspired Robots (Snakelike Locomotor and Manipulator). Oxford: Oxford University Press, 1993.
  • 3Ma S, Araya H, Li L. Development of a Creeping Locomotion of Snake- like Robot. Int. J. of Robotics and Automation, 2002,17(4) : 146-153.
  • 4Burdick J, Radford J, Chirikjian G S. A Sidewinding Locomotion Gait for Hyper- Redundant Robots. Advanced Robotics, 1995, 9(3): 195-216.
  • 5Dowling K. Limbless Locomotion: Learning to Crawl with a Snake Robot: [D Dissertation].Pittsburgh: Carnegie Mellon University, 1997.
  • 6Yim M, Duff D G, Roufas K D. Polybot : a Modular Reconfigurable Robot. In:IEEE Conference on Robotics and Automation, 2000 : 514- 520.
  • 7Fukuda T, Kawauchi Y. Cellular Robotic System(CEBOT) as One of the Realization of Self--orga-nizing Intelligent Universal Manipulator. In:IEEE Conference on Robotics and Automation,1990:662-667.
  • 8Yim M. New Locomotion Gains. In: IEEE Conference on Robotics and Automation, 1994: 2508- 2514.
  • 9Fukuda T, Nagakawa S. Dynamically Reconfigurable Robotic System. In: IEEE Conference on Robotics and Automation, 1988:1581-1586.
  • 10Armando C. de Pina Filho,Max S. Dutra,Luciano S. C. Raptopoulos.Modeling of a bipedal robot using mutually coupled Rayleigh oscillators[J]. Biological Cybernetics . 2005 (1)

共引文献13

同被引文献45

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部