期刊文献+

基于可用能的多电飞机能量利用率分析方法 被引量:4

Analysis Method of More-electric Aircraft Energy Efficiency Based on Exergy
原文传递
导出
摘要 为了分析复杂多电飞机系统的能量使用情况,将模块化系统建模与可用能分析方法相结合构造出一种能量利用率分析方法。利用该方法将多电飞机系统分成动力、电力、液压、机体、防冰除冰、环境控制和座舱等子系统,在完整巡航任务剖面内计算各子系统可用能的分配和使用情况,分析相同飞行状态下不同子系统以及相同子系统在不同飞行状态下的能量利用率。所采用的燃料可用能计算公式不仅考虑了化学能还考虑了燃烧状态的影响。结果显示,多电飞机中可用能损失主要发生在发动机中,液压作动系统紧随其次;防冰除冰单元在飞机盘旋阶段的可用能效率较低,在起飞着陆阶段效率较高。 To analyze the energy efficiency of more-electric aircraft,the modular modeling of a system and exergy analysis are combined constructing an analysis method of energy efficiency.Using this new method,the system of a more-electric aircraft is decomposed into pieces,including the propulsion system,electric system,hydraulic system,frame,anti-icing & deicing system,environmental control units and cabin.In addition,the exergy distribution and efficiency among the various subsystems are calculated during a completed cruise mission.Energy efficiency of the same sub-system working in different phases and of different sub-systems working in the same flight phase are also analyzed.The combustion state term which influences the formula of fuel exergy is taken into consideration along with the chemical energy.The result shows that exergy destruction of a more-electric aircraft occurs mainly in the engine,followed next by the hydraulic actuation system.The antiicing & de-icing unit exhibits good efficiency during takeoff and landing,but not so good in the holding phase.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第5期1276-1283,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11102159)~~
关键词 可用能 多电飞机 能量利用率 热力学第二定律 燃料可用能 exergy more-electric aircraft energy efficiency the second law of thermodynamics fuel exergy
  • 相关文献

参考文献17

  • 1程海龙.多电飞机机电系统关键技术探究[J].科技信息,2013(19):104-104. 被引量:10
  • 2陈伟.基于多电飞机的先进供电技术研究[J].飞机设计,2006,26(4):64-68. 被引量:29
  • 3任剑,刘永新,郝世勇.多电飞机的关键技术研究[C].第二届中国航空学会青年科技论坛文集,2006:16-21.
  • 4O'Connell T,Russell G,McCarthy K,et al.Energy management of an aircraft electrical system[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2010.
  • 5Bejan A,Siems D L.The need for exergy analysis and thermodynamic optimization in aircraft development[J].Exergy,An International Journal,2001,1(1):14-24.
  • 6Roth B.The role of thermodynamic work potential in aerospace vehicle design[C]//16th ISABE,2003.
  • 7Kousksou T,E1 Rhafiki T,Arid A,et al.Power,efficiency,and irreversibility of latent energy systems[J].Journal of Thermo-physics and Heat Transfer,2008(22):234-249.
  • 8昌敏,周洲,李盈盈.基于能量平衡的太阳能飞机可持续高度分析[J].西北工业大学学报,2012,30(4):541-546. 被引量:13
  • 9何为,吴玉庭,马重芳,庄荟燕.单螺杆发动机空气动力系统能效分析[J].机械工程学报,2011,47(6):150-155. 被引量:7
  • 10于黎明,王占林,裘丽华.基于能源优化的多电飞机混合作动系统配置研究[C]∥第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集,2008.

二级参考文献20

  • 1丁卫华,刘昊,陈鹰,陶国良.气动汽车动力系统能效分析[J].机床与液压,2005,33(8):50-52. 被引量:12
  • 2冯斌.波音787的新技术[J].航空维修与工程,2005(5):37-39. 被引量:7
  • 3查世樑.节能长寿单螺杆压缩机技术新进展[J].通用机械,2006(1):34-36. 被引量:5
  • 4[1]Karimi M K.Power Quality Specification Development for More Electric Airplane Architectures[R].SAE 2002-01-3206.
  • 5Noll T E, Brown J M, et al. Investigation of the Helios Prototype Aircraft Mishap. NASA Report, 2004.
  • 6Keidel B. Auslegung und Simulation von Hochfliegenden, Dauerhaft Stationierbaren Solardrohnen. Lehrstuhl fur Flugmechanik und Flugregelung, Technische Universitat Mtinchen, 2000.
  • 7Andr6 Noth. Design of Solar Powered Airplanes for Continuous Flight. Switzerland : Ing6nieur en Microtechnique Ecole Polytech- nique F6d6rale de Lausanne, 2008.
  • 8John Frederick Gundlach. Multi-Disciplinary Design Optimization of Subsonic Fixed-Wing Unmanned Aerial Vehicles Projected through2025. Virginia Polytechnic Institute and State University, 2004.
  • 9THIPSE S S.Compressed air car. Tech.Monitor:Air Pollution Control Technologies . 2008
  • 10Shen Y T,Hwang Y R.Design and implementation of air-powered motorcycles. Applied Energy . 2009

共引文献55

同被引文献49

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部