期刊文献+

加热表面水珠运动特性研究 被引量:1

Study of Water Drop Motion Characteristics on Heating Surface
原文传递
导出
摘要 为研究加热表面的水珠运动特性,提出了加热表面水珠的几何参数、受力及其运动过程的计算方法。试验获得了水珠的表面阻滞力、黏性阻力和气动力计算关系式中的相关系数,给出了不同风速条件下水珠运动的临界直径,进行了加热表面水珠运动试验并对其过程进行了数值计算。试验结果表明:水珠的无量纲表面阻滞力保持恒定,运动时受到的黏性阻力与其运动速度和宽度有关,在外流场作用下所受的气动力可采用修正圆球阻力公式进行计算。将试验获得的相关系数加入水珠运动模型中,对加热表面水珠运动过程进行数值计算,计算结果与试验结果吻合,说明本文所述方法能够准确地模拟加热表面水珠大小和位置随时间的变化。 To study the water drop motion characteristics on heating surface,a method is proposed to calculate the geometric parameters,force and motion process of water drop on the heating surface.Experiments are conducted to calibrate the correlation coefficients used in the calculation of surface retention force,the viscous drag and the aerodynamic force.The critical diameter of drop movement is given for different wind speeds.Water drop movement on heating surface is investigated by experimental and computational approaches.The results show that the dimensionless surface retention force keeps constant and the viscous drag is related to the drop velocity and width.The aerodynamic force under the action of outside airflow can be calculated by the correction of sphere drag formula.By applying correlation coefficient obtained in the experiment to the numerical model,water drop movement on heating surface can be predicted.The computation results fit well with the test results.It is concluded that the present method can simulate the time history of water drop size and location on the heating surface accurately.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第5期1292-1301,共10页 Acta Aeronautica et Astronautica Sinica
关键词 加热表面 临界直径 水珠运动 水珠蒸发 防冰 heating surface critical diameter water drop motion water drop evaporation anti-icing
  • 相关文献

参考文献22

  • 1Messinger B L.Equilibrium temperature of an unheated icing surface as a function of air speed[J].Journal of the Aeronautical Sciences,1953,20(1):29-42.
  • 2Miller D R,Lynch C J,Tate P A.Overview of high speed close-up imaging in an icing environment,AIAA-2004-0407[R].Reston:AIAA,2004.
  • 3Olsen W,Walker E.Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces,NASA-TM-87184[R].Washington,D.C.:NASA,1986.
  • 4孟繁鑫,陈维建,梁青森,张大林.引射式结冰风洞内圆柱结冰试验[J].航空动力学报,2013,28(7):1467-1474. 被引量:7
  • 5Thiele U,Neuffer K,Bestehorn M,et al.Sliding drops on an inclined plane[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206(1):87-104.
  • 6Rio E,Daerr A,Andreotti B,et al.Boundary conditions in the vicinity of a dynamic contact line:experimental investigation of viscous drops sliding down an inclined plane[J].Physical Review Letters,2005,94(2):024503.
  • 7Servantie J,Müller M.Statics and dynamics of a cylindrical droplet under an external body force[J].The Journal of Chemical Physics,2008,128(1):014709.
  • 8Fortin G.Simulation de l'accrétion de glace sur un obstacle bidimensionnel par la méthode des bissectrices et par la modé1isation des ruisselets et des gouttes de surface[D].Quebec:Universite du Quebeca Chicoutimi,2003.(in French).
  • 9E1Sherbini A,Jacobi A.Retention forces and contact angles for critical liquid drops on non horizontal surfaces[J].Journal of Colloid and Interface Science,2006,299(2) :841-849.
  • 10Extrand C W,Kumagai Y.Liquid drops on an inclined plane:the relation between contact angles,drop shape,and retentive force[J].Journal of Colloid and Interface Science,1995,170(2):515-521.

二级参考文献15

  • 1Lynch F T,Khodadost A. Effects of ice accretions on air-craft aerodynamics [J]. Progress in Aerospace Sciences,2001,37(8):669-767.
  • 2Bragg M B,Broeren A P,Blumenthal L A. Iced-airfoil aer-odynamics[J]. Progress in Aerospace Sciences,2005,41(5):323-362.
  • 3Addy H E, Potapczuk M G,Sheldon D W. Modern airfoilice accretions[R]. AIAA 97-0174,1997.
  • 4Kind R J,Potapczuk M G,Feo A, et al. Experimental andcomputational simulation of in-flight icing phenomena[J],Progress in Aerospace Sciences, 1998,34(5/6) :275-345.
  • 5Shin J,Bond T. Results of an icing test on a NACA 0012airfoil in the NASA Lewis Icing Research Tunnel [ R].NASA TM-105374,1992.
  • 6Shin J, Bond T. Experimental and computational ice shapesand resulting drag increase for a NACA0012 airfoil[R].NASA TM-105743,1992.
  • 7Vecchione L,De Matteis P,Leone G. An overview of theCIRA Icing Wind Tunnel[R]. AIAA-2003-0900,2003.
  • 8Henry R C,Guffond D,Garnier F,et al. Heat transfer co-efficient measurement on iced airfoil in small icing windtunnel[J3. Journal of Thermophysics and Heat Transfer,2000,14(3):348-354.
  • 9Ide R F. Liquid water content and droplet size calibrationof the NASA Lewis Icing Research Tunnel [ R]. NASATM-102447,1990.
  • 10Kind R J,01eskiw M M. Experimental assessment of a wa-ter-film-thickness Weber number for scaling of glaze icing[R]. AIAA-2001-0836’2001.

共引文献6

同被引文献1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部