期刊文献+

一种混合的扩展目标跟踪方法 被引量:8

A Hybrid Approach for Extended Object Tracking
原文传递
导出
摘要 与传统的目标跟踪不同,扩展目标跟踪(EOT)不忽略目标的轮廓特征,同时对目标的质心运动学状态和轮廓特征进行估计。基于随机矩阵的扩展目标跟踪方法用随机正定矩阵来描述目标的轮廓特征,并且建立了适合扩展目标跟踪的量测模型。为了改善目标机动时的跟踪性能,根据椭圆(体)与正定矩阵的关系,提出基于椭圆(体)拟合的扩展目标跟踪方法。进一步地,为了综合上述两类方法的优点,提出一种混合的扩展目标跟踪方法,能够根据目标机动与否在两类方法中进行选择。仿真结果表明,该混合方法的轮廓特征估计误差低于前述两类方法,质心运动学状态的估计性能也更好。 Different from the traditional object tracking technology,extended object tracking (EOT) doesn't ignore the target’s physical extension.Instead,EOT simultaneously estimates both the centroid's kinematical state and the physical extension of the target.A random matrix based EOT approach characterizes the physical extension with a random symmetrical positive definite matrix,i.e.the ellipse/ellipsoid,and establishes a measurement model which is suitable for EOT.In order to improve the tracking performance when the target maneuvers,an ellipse/ellipsoid fitting based EOT approach is proposed based on the relationship between the ellipse/ellipsoid and the symmetrical positive definite matrix.Furthermore,a hybrid approach for EOT is presented to combine the advantages of the abovementioned two EOT approaches.Simulation results show that the hybrid approach can appropriately decide whether the target is maneuvering and choose a better approach.The physical extension estimation error of the hybrid approach is lower than the other approaches,and the estimation performance of the centroid's kinematical state is also better.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第5期1336-1346,共11页 Acta Aeronautica et Astronautica Sinica
基金 航空科学基金(20128058006)~~
关键词 目标跟踪 扩展目标跟踪 随机矩阵 椭圆拟合 矩阵分解 Givens旋转 信息融合 target tracking extended object tracking random matrix ellipse fitting matrix decomposition Givens rotation information fusion
  • 相关文献

参考文献25

二级参考文献37

  • 1Blackman S, Popoli R. Design and analysis of modern tracking systems[M]. London: Artech House, 1999, 325- 373.
  • 2Mahler P S. Statistical multisource-multitarget informa tion fusion[M]. I.ondon: Artech House, 2007.
  • 3Mahler P S. Multitarget Bayes filtering via first order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
  • 4Ba Ngu V, Singh S, Doucet A. Sequential Monte methods for multi-target filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.
  • 5Ba Ngu V, Wing-Kin M. The Gaussian mixture probabili ty hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
  • 6Clark D, Panta K. The GM-PHD filter multiple target tracker[C]//9th International Conference on Information Fusion. Florence:IEEE, 2006:1-8.
  • 7Clark D, Ba Ngu V, Bell J. GM-PHD filter multitarget tracking in sonar images[C] // The International Society for Optical Engineering. Kissimmee:SHE, 2006, 6235: 62350R.
  • 8Juang R R, Levchenko A, Burlina P. Tracking cell motion using GM PHD[C]//International Symposium on Bi- omedical Imaging. Boston: IEEE, 2009 : 1154-1157.
  • 9Pollard E, Plyer A, Pannetier B, el al. GM PHI) filters for multi object tracking in uncalibrated aerial videos[C] // 12th lnternatkmal Conference on Information Fusion. Se attle: IEEE, 2009:1171-1178.
  • 10Keil K H, Hupfer W. Simulation of signal and data pro cessing for a pair of GEO IR sensors[C]//Signal and Data Processing of Small Targets. San Diego:SPIE, 2007: 669911. 1-669911. 12.

共引文献49

同被引文献73

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部