期刊文献+

基于人工神经网络的甘肃省年积温空间插值研究

Studyon annual accumulative temperature spatial interpolation of Gansu Province based on artificial neural network
下载PDF
导出
摘要 中国西部地区气象站点空间分布不均匀,而且数量较少,导致气象要素空间插值的误差较大。以甘肃省为研究区,将其划分为东、中、西3个插值区域,利用人工神经网络方法,对196~2009年气象站点地面观测的≥0℃年积温值进行拟合,将202个气象站点数据扩展到586个,插值结果表明:3个区域年积温平均绝对误差(MAE)为246.53℃、平均相对误差(MRE)为8.37%;东中西3个区域精度与原有气象站点数据量有明显关系。研究方法和结果可为进行甘肃省生态环境变化研究提供方法和数据参考,为进一步进行区域空间插值提供数据基础。 There are uneven distribution of a few meteorological stations in western China,which result in more errors in spatial interpolation of meteorological elements.Selected Gansu as study area,dividing into eastern,middle and western region,the paper used artificial neural network to fit ≥0 ℃ annual accumulative temperature between 1 960 ~ 2009 and extended the meteorological data from 202 meteorological stations to 586 sites.The results of the interpolation showed that the mean absolute error (MAE)and mean relative error (MRE)of average annual accumulative temperature in three regions were 246.53 ℃ and 8.37%,respectively. The accuracy of data is related to the number of meteorological stations.The study provide the approach and references for the study of ecological environment in Gansu,and the basis for further studying of regional spatial interpolation.
出处 《草原与草坪》 CAS 2014年第2期23-27,共5页 Grassland and Turf
基金 国家自然科学基金项目(30960264)资助
关键词 人工神经网络 甘肃省 ≥0℃年积温 空间插值 artificial neural network Gansu Province annual accumulative temperature spatial interpolation
  • 相关文献

参考文献17

二级参考文献230

共引文献1048

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部