期刊文献+

构造物理模拟与数值模拟技术的对比与结合 被引量:4

Comparison and combination of structure physical modeling and numerical simulation techniques
原文传递
导出
摘要 详细分析了应力场数值模拟与物理模拟的实验过程,对比两技术之间实验条件、模型转换、实验结果等方面具有的优势及适用条件,提出两者相结合进行构造成因机制分析的方法,并以高邮凹陷南断阶为例进行了说明.研究认为:数值模拟与物理模拟技术具有各自的优势,前者得到的是变形初期的应力分布结果,主要用于成因解释和变形预测,而物理模拟成果主要反应整个变形过程的构造演化;南断阶的断层分布范围受张应力控制、断层走向受剪应力影响,竹墩和许庄地区具有相似的应力分布和断层形成顺序,故断层组合及成因相似,断裂带由张应力作用产生的NE向断层及张剪应力作用下产生的NNE向、EW向共轭断层共同组成. Based on the detailed analysis of structure physical modeling and numerical simulation experiments, also, comparison of the advantages and applicable conditions of the two experiments from experiment conditions, model transfer, to experiment results, this paper provides a method to analyze structure genetic mechanism using both two techniques by taking south fault terrace in Gaoyou sag for an example. It was concluded that numerical simulation gained the distribution of stress in the early stage of transformation aiming at genetic explanation and transformation prediction while physical modeling reflecting the structural evolution of the all transformed stages. Furthermore, it was studied that distribution of faults in the south fault terrace were controlled by extensional stress and the strike of faults were dominated by shear stress, and because of the similar stress distribution and faults formed order, combination of fault and genetic mechanism were also similar in the Zhudun area and Xuzhuang area, and the fault zone were composed by faults with NE strike generated by extensional stress and conjugated faults with NNE, EW strike generated by tensional-shear stress.
出处 《地球物理学进展》 CSCD 北大核心 2014年第2期706-710,共5页 Progress in Geophysics
基金 "十二五"国家科技重大专项(2011ZX05006-004及2011ZX05040-005)联合资助
关键词 沙箱实验 数值模拟 适用条件 应力场 成因机制 sandbox experiment numerical simulation applicable conditions stress field genetic mechanism
  • 相关文献

参考文献9

  • 1Braun J, Att G E, Scott D L, et al. 1994. A simple kinematic model for crustal deformation along two-and three-dimensional listric normal faults derived from scaled laboratory experiments[J]. Journal of Structural Geology, 16 (10) : 1477-1490.
  • 2Bott M H, Dean D S. 1972. Stress systems at young continental margins[J]. Nature, 235 : 23-25.
  • 3Cctton j, Koyi H. 2000. Modeling of thrust fronts above ductile and frictional detachments: application to structures in the Salt Range and Potwar Plateau, Pakistan [J]. Geological Society of America Bulletin, 112(3) : 351-363.
  • 4Colletta B, Letouzey J, Pinedo R, et al. 1991. Computerized X-ray tomography analysis of sandbox models: Examples of thin- skined thrust systems[J]. Geology, 19: 1063-1067.
  • 5Davy P, Cobhold P R. 1991. Experiments on shortening of a 4-layer model of the continental lithosphere [J]. Tectonophysics, 188: 1-25.
  • 6Gutscher M, Klaeschen D, Flueh E, et al. 2001. Non Coulomb wedges, wrong-way thrusting, and natural hazards in Cascadia [J]. Geology, 29(5) : 379-382.
  • 7Krantz R W. 1991. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures [J]. Tectonophysics, 188: 203-207.
  • 8MeClay K R, White M J. 1995. Analogue modelling of orthogonal and oblique rifting[J]. Marine and Petroleum Geology, 12(2): 137-151.
  • 9MeClay K, Bonora M. 2001. Analog models of restraining stopovers in strike-slip fault systems[J]. AAPG Bull, 85(2):233-260.

同被引文献79

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部