期刊文献+

基于Elman动态神经网络的降雨—径流模拟研究 被引量:6

Application of rainfall-runoff simulation based on Elman recurrent dynamic neural network model
下载PDF
导出
摘要 采用Elman动态神经网络对沂沭河流域上游临沂子流域日径流量进行模拟。为了更好地检验该网络估测径流的精度,同时采用陆面水文过程模型TOPX进行对比分析。确定性线系数、相关系数、平均相对误差和平均相对均方根误差四个统计指数及流域径流过程。结果表明,Elman动态神经网络能够对日径流量进行较好的模拟,较好地捕捉洪峰流量和出现时间,为降雨径流模拟提供了一种有效可靠的方法。 An Elman recurrent neural network model (ENN) is constructed and applied to the daily runoff forecast in the Linyi sub-catchment of upper Yishu river basin in this paper.In order to further evaluate the performance of ENN,land surface hydrological model TOPX is applied as a comparison at the same time in the study region.Based on analysis indexes such as Nash-Sutcliffe coefficient, correlation coefficient, mean relative error and root mean relative square error, the results of daily runoff and flooding processes indicated that ENN presents high accuracy in hydrological simulations on the rainfall-run- off dynamic process, the peak flow and peak occurrence time.It is feasible to take it as a promising and efficient method to simulate the daily runoff.
出处 《大气科学学报》 CSCD 北大核心 2014年第2期223-228,共6页 Transactions of Atmospheric Sciences
基金 公益性行业(水文)科研专项(GYHY201001047) 江苏省高校自然科学基金项目(13KJB170017) 淮河流域气象开放研究基金项目(HRM201205) 国家自然科学基金资助项目(41105074)
关键词 ELMAN神经网络 TOPX 降雨一径流 Elman neural network TOPX rainfall-runoff
  • 相关文献

参考文献8

  • 1Carcano E C, Bartolirti P, Mulli M, et ai.2008,Jordan recurrent neural network versus IHACRES in modeling daily stream flows [ J].J Hydro, 362 (3/4) : 291-307.
  • 2唐万梅.BP神经网络网络结构优化问题的研究[J].系统工程理论与实践,2005,25(10):95-100. 被引量:73
  • 3Nash J E,Sutcliffe J V. 1970.River flow forecasting through conceptual model:A discussion of principles [J ] .J Hydro, 10(3) :282-290.
  • 4Srinivasn B, Prasad U R, Rao N J. 1994, Back propagation through adjoins for the identification of nonlinear dynamic systems using recurrent neural models [ J ]. 1EEE Transactions on Neural Networks,5 (2) :213-227.
  • 5Elman J L. 1990, Finding structure in time [ J ]. Cogn Sci, 14 ( 2 ) : 179-21 1.
  • 6Ju Q, Yu Z B, Hao Z C, et al.2007,Hydrologic simulations with artificial neural networks [ C ]//Burgess A. Third International Conference on Natural Computation. Los Alamitos: IEEE Computer Society Publications, 2 : 22-27.
  • 7Tommy W S, Chow Y F. 1998,A recurrent neural network based real time learning control strategy applying to nonlinear system with unknown dynamics[ J ].1EEE Transactions on Neural Networks,45 ( 1 ) :151-161.
  • 8Kin C L, Ball ] E, Shanna A.2001, An application of artificial neural networks for rainfall forecasting [J .Math Comput Model,33(6) : 683-693.

二级参考文献8

共引文献72

同被引文献79

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部