期刊文献+

NSGA-Ⅱ算法的改进及其在多段翼型缝道参数优化中的应用 被引量:13

An Improvement to NSGA-Ⅱalgorithm and its application in optimization design of multi-element airfoil
下载PDF
导出
摘要 提出了NSGA-Ⅱ算法的一个改进方法,对加入新种群的父代种群个体进行精英筛选,从而增加了新种群中新个体的数目,以实现更好的全局寻优。选取一个有理论解的优化问题,对算法全局寻优能力的改进进行了验证。随后使用改进后的NSGA-Ⅱ算法作为核心算法搭建了集群并行优化平台,对多段翼型的缝道参数进行优化设计,获得了较为满意的结果。优化验证算例显示,该集群并行优化平台具有较高的效率和可行性。 This paper proposes that an elite selection is applied to the parent population before it is directly added into the combined population,as is done in the original NSGA-Ⅱ method.This modification can better avoid the algorithm′s premature convergence to local optimums,and better globally explore the sample space.An analytical test problem with many local optimums is solved using the improved method.The result is compared with those of several other optimization methods.The improvements of the proposed modification are confirmed.Then the improved NSGA-Ⅱ method is used to find the optimum element positions and deflection angles of the landing configuration of a multi-element airfoil,to maximize the lift coefficient.The optimal result is close to that from the original NSGA-Ⅱ,while the optimum is achieved with fewer iterations.This satisfactory result shows that the improved optimization method is feasible and efficient for practical use.
出处 《空气动力学学报》 CSCD 北大核心 2014年第2期252-257,共6页 Acta Aerodynamica Sinica
基金 国家自然科学基金项目(11102098 11372160和10932005)
关键词 遗传算法 NSGA-Ⅱ 并行优化 多段翼型 缝道参数 genetic algorithm NSGA-Ⅱ parallel optimization multi-element airfoil position and deflection parameters
  • 相关文献

参考文献15

  • 1JONES D R. A taxonomy of global optimization methods based on response surfaces [J]. Journal of Global Optimization, 2001, 21(4): 345-383.
  • 2HOLLAND J H. Adaptation in natural and artificial systems an introductory analysis with applications to biology, control and artificial intelligence[M]. MIT Press, 1992.
  • 3DEB K. A fast and elitist muhiobjective genetic algorithm: NS- GA- II [J]. Evolutionary Computation, IEEE Transactions on, 2002, 6(2): 182-197.
  • 4POLES S. MOGA- 1/ an improved multi-objective genetic algo- rithm[R]. Trieste. ESTECO Technical Report 6, 2003.
  • 5DUVIGNEAU R, VISONNEAU M. Shape optimization of in compressible and turbulent flows using the simplex method[C]. 15th AIAA Computational Fluid Dynamics Conference, Ana heim, CA, 2001.
  • 6EPSTEIN B, PEIGIN S. Robust hybrid approach to multiobjec- tive constrained optimization in aerodynamics[J]. AIAA Jour-hal, 2004, 42(8): 1572-1581.
  • 7JAMESON A. Aerodynamic design via control theory[J]. Jour- nal of Scientific Computing, 1988, 3(3) : 233-260.
  • 8REUTHE J, JAMESON A. Control theory based airfoil design using the Euler equation[R]. AIAA Paper, 1994: 206-222.
  • 9JAMESON A, MARTINELLI L, PIERCE N, Optimum aero dynamic design using the Navier-Stokes equations[J]. Theoreti cal and Computational Fluid Dynamics, 1998, 10: 213-237.
  • 10MARTINELLI L, JAMESON A. Computational aerodynamics solvers and shape optimization[J]. Journal of Heat Transfer 2013, 135(1) 011002: 1-9.

二级参考文献6

  • 1Audet C, Dennis J E. Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on Optimization, 2006, 17:188 -217.
  • 2Simpson T W, Mauery T M, Korte J J, Mistree F. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimizaton. AIAA Journal 2001, 39 (12) : 2233 - 2241.
  • 3Gaitonde A L. A Dual-Time Method for the Solution of the Unsteady Euler Equations. Aeronautical Journal, 1994, 10:283 - 291.
  • 4Roe P L. Approximate Riemann Solvers, Parameter Vector and Difference Schemes. Journal of Computation Physics 43,357 - 372.
  • 5MeKay M D, Beckman R J, Conover W J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 1979, 21 (2) : 239 - 245.
  • 6Sacks J, Welch W J, Michell T J, Wynn H P. Design and Analysis of Computer Experiments. Statistical Science, 1989, 4 (4) :409 -435.

共引文献5

同被引文献142

引证文献13

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部