期刊文献+

衣原体噬菌体衣壳蛋白Vp1及其高保守区二级结构及B细胞表位研究 被引量:2

Bioinformation study of capsid protein Vpl high conservative region parts from Chlamydiaphage
下载PDF
导出
摘要 目的:分析衣原体噬菌体Vp1蛋白及其高保守区的二级结构并预测其B细胞表位。方法:以ClustalX程序比对各株衣原体噬菌体衣壳蛋白Vp1序列获得高保守区序列。以Vp1氨基酸序列为基础,采用Gamier-Robson法、Chou-Fasman法、Eisenberg法和Karplus-Schulz法分析蛋白二级结构;按Kyte-Doolittle法、Emini法和Jameson-Wolf法预测蛋白的抗原表位。结果:衣原体噬菌体Vp1蛋白的二级结构以β折叠为主,有少量α螺旋;其高保守区含多个抗原位点,预测其N端1-8,103-110,158-164,189-196,322-332,427-434,478-488为优势表位。结论:衣原体噬菌体Vp1蛋白及其高保守区存在复杂的蛋白结构,可形成多个可选表位。 Objective: To predict the secondary structure and B cell epitope of capsid protein Vp 1 in high conservative region. Methods: The conservative region was acquired by comparing the Vpl protein sequences. The secondary structure of these regions were predicted by the method of Gamier-Robson, Chou-Fasman, Eisenberg and Karplus-Sehulz while its cell epitope was predicted by the method of Kyte- Doolittle ,Emini and Jameson-Wolf. Results: The main constructions of Chlamydiaphage Vpl were β regions, including several α regions. And the sections of 1-8,103-110,158-164, 189-196,322-332, 427-434,478-488 in the N-terminal of the conservative region could be the epitopes of B cell. Conclusion: The conservative region of Vp 1 protein has the complicated structures and can form into muhiple epitopes.
出处 《天津医科大学学报》 2014年第3期188-191,共4页 Journal of Tianjin Medical University
关键词 微病毒 蛋白 结构 分析 microvirus protein structure analysis
  • 相关文献

参考文献11

  • 1Saka H A, Valdivia R H. Acquisition of nutrients by Chlamydioe: u- nique challenges of living in an intracellular compartment[J]. Curr Opin Microbiol, 2010, 13(5): 4.
  • 2Salt M, Livingstone M, Graham R, et al. Identification, sequencing and molecular analysis of Chp4, a novel chlamydiaphage of C hlamydophi- la abortus belonging to the family Microviridae[J]. Gen Viral, 2011, 92 (7): 1733.
  • 3Sliwa-Dominiak J, Suszyfiska E, Pawlikowska M, et al. Chlamydia bacteriophages[J]. Arch Microbiol, 2013, 195(10): 765.
  • 4Kodaira K, Nakano K, Okada S, et al. Nueleotide sequence of the genome of the bacteriophage 3: interrelationship of the genome structure and the gene products with those of the phages, X174, G4 and K[J]. Biochim Biophys Acta, 1992, 30(11): 277.
  • 5Ponomarenko J V, Bourne P E. Antibody-prutein interactions: bench- mark datasets and prediction tools evaluation[J]. Struct Biol, 2007, 7 (63): 1.
  • 6Su C H, Pal N R, Lin K L, et al. Identification of amino acid propens;ties that are strong determinants of linear B-cell epi- topeusing neural networks[J]. PLOS One, 2012, 7(2): 617.
  • 7Larsen J E, Lund O, Nielsen M. Improved method for predicting lin- ear B-cell epitopes[J]. Immunome Res, 2006, 2(2): 1.
  • 8Beaver J E, Bourne P E, Ponomarenko J V. EpitopeViewer. a Java appli- cation for the visualization and analysis of immune epitopes in the im- mune epitope database and analysis resource [J]. Immunome Res, 2007, 21(2): 3.
  • 9Yoo S Y, Merzlyak A, Chung W J, et al. Facile growth factor immo- bilization platform based on engineered phage matrices[J]. Soft Mat- ter, 2011, 14(7): 1660.
  • 10郑小莉,张艺,谢晓东,罗波,刘佳佳.鼠Mincle蛋白B细胞抗原表位预测及多克隆抗体制备[J].免疫学杂志,2011,27(8):683-687. 被引量:8

二级参考文献12

  • 1Matsumoto M, Tanaka T, Kaisho T, et al. A novel LPS-in- ducible C-type lectin is a transcriptional target of NF-IL6 in macrophages [J]. J Immunol, 1999, 163 (9): 5039-5048.
  • 2Bugarcic A, Hitchens K, Beckhouse AG, et al. Human and mouse macrophage-inducib|e C-type lectin (Mincle) bind Candida albicans [J]. Glycobiology, 2008, 18 (9): 679-685.
  • 3Wells CA, Salvage-Jones JA, Li X, et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albi- cans [J]. J Immunol, 2008, 180 (11): 7404-7413.
  • 4Yamasaki S, Matsumoto M, Takeuchi O, et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia [J]. Proc Natl Acad Sci U S A, 2009, 106 (6): 1897-1902.
  • 5Bendtsen JD, Nielsen H, yon Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0 [J]. J Mol BM, 2004, 340 (4): 783-795.
  • 6Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence [J]. Nat Rev Immunol, 2007, 7 (3): 179-190.
  • 7Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors [J]. Proc Natl Acad Sci U S A, 2000, 97 (25): 13766-13771.
  • 8Roelofs MF, Joosten LA, Abdollahi-Roodsaz S, et al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of Toll-like receptors 3, 4, and 7/8 results in synergistic cytokine pro- duction by dendritic cells [J]. Arthritis Rheum, 2005, 52 (8): 2313 -2322.
  • 9Bekeredjian-Ding I, Roth SI, Gilles S, et al. T cell-independent, TLR-induced IL-12p70 production in primary human monocytes [J]. J. Immunol, 2006, 176 (12): 7438-7446.
  • 10Gantner BN, Simmons RM, Canavera SJ, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor2 [J]. J Exp Med, 2003, 197 (9): 1107-1117.

共引文献7

同被引文献18

  • 1Chumduri C, Gurumurthy R K, Zadora P K, Mi Y, Meyer T F. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response[J]. Cell Host Microbe, 2013,13 (6) : 746-758.
  • 2Saka H A, Valdivia R H. Acquisition of nutrients by Chlamydiae.. unique challenges of living in an intracellu- lar compartment[J]. Curt Opin Microbiol, 2010,13( 1 ) : 4-10.
  • 3Debarbieux L, Saussereau E, Maura D. Phagotherapy: a nightmare for bacteria, a dream for physicians[J]. Bi- ol Aujourdhui,2013,207(3) :181-190.
  • 4Yoo S Y, Kobayashi M, Lee P P, Lee S W. Early os- teogenic differentiation of mouse preosteoblasts induced by collagen-derived DGEA-peptide on nanofibrous phage tissue matrices [J]. Biomacromolecules, 2011, 12 ( 4 ) : 987-996.
  • 5Yoo S Y, Oh J W,Lee S W. Phage-chips for novel opti- cally readable tissue engineering assays[J]. Langmuir, 2012,28(4) :2166-2172.
  • 6Sliwa-Dominiak J, Suszyfiska E, Pawlikowska M, Deptula W. Chlamydia bacteriophages[J]. Arch Micro- hiol, 2013,195(10-11) :765-771.
  • 7de la Iglesia F, Martinez F, Hillung J, Cuevas J M, Gerrish P J, DarOs J A, Elena S F. Luria-delbruck esti- mation of turnip mosaic virus mutation rate in vivo[J]. Virology, 2012,86(6) :3386-3388.
  • 8Hu Q, Chen W, Huang K, Baron M D, Bu Z. Rescue of recombinant peste des petits ruminants virus: crea- tion of a GFP-expressing virus and application in rapid virus neutralization test[J]. Vet Res, 2012,1 (2) : 43-48.
  • 9Huang Y X, Bao Y L, Guo S Y, Wang Y, Zhou C G, Li Y X. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis[J]. BMC Bioin- formaties, 2008, 16(12) :538-542.
  • 10Sivalingam G N, Shepherd A J. An analysis of B-cell epitope discontinuity [J] . Molecular Immunology, 2012,51 (3) : 304-309.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部