期刊文献+

基于二次效用函数的投资组合问题研究 被引量:1

Portfolio Optimization for Quadratic Utility Maxinization
原文传递
导出
摘要 设无风险利率、股票收益率和波动率都是一致有界随机过程,在股票价格服从跳跃一扩散过程时,同时考虑具有随机资金流的介入,研究了二次效用的动态投资组合选择优化问题,通过随机线性二次控制和倒向随机微分方程得到了最优投资组合策略的解析表达式. In real word as the significant information occurs, the stock price has discontinuous jump. Under this situation, this paper is concerned with a dynamic portfolio selection problem in a complete financial market for quadratic utility maximization under stochastic flows. The problem is solved via linear quadratic control technique and results from BSDEs theory.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第9期19-24,共6页 Mathematics in Practice and Theory
基金 陕西省教育厅科研计划项目(2013JK0594) 陕西省科技厅计划项目(2011JM1007)
关键词 跳跃扩散过程 二次效用函数 倒向随机微分方程 随机线性二次控制 投资组合 jump-diffusion process quadratic utility maximization backward stochastic dif-ferential equations linear quadratic control optimal portfolio selection
  • 相关文献

参考文献10

  • 1Markowitz H.Portfolio selection of finance[J].Journal of Finance,1952,7:77-91.
  • 2Merton R C.Optimum Consumption and Portfolio Rules in a Continuous-time Model[J].Journal of Economic Theory,1971,3(4):373-413.
  • 3Li X,Zhou X Y,Lim A E B.Dynamic mean-variance portfolio selection with no-shorting constraints[J].Journal on Control and Optimization,2002,40(5):1540-1555.
  • 4Fu C P,Li X.Dynamic mean-variance portfolio selection with borrowing constraint[J].European Journal of Operation Research,2010,200(1):312-319.
  • 5Lim A E B,Zhou X Y.Mean-variance portfolio selection with random parameters in an complete market[J].Mathematics of Operation Re.search,2002,27(1):101-120.
  • 6Lim A E B.Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market[J].Mathematics of Operation Research,2004,29(1):132-161.
  • 7Ferland R,Watier F.FBSDE approach to utility portfolio selection in a market with random parameters[J].Statistics&Probability Letters,2008,78(4):426-434.
  • 8N.EL KAROUI Backward Stochastic Differential Equations In Finance[J].Mathematical Finance1997,7(1):1-71.
  • 9常浩,荣喜民.随机参数和随机资金流环境下基于二次效用函数的投资组合优化[J].应用数学学报,2011,34(4):703-711. 被引量:6
  • 10Merton R C.Option pricing when underlying stock returns are discontinuous[J].J Financial Econ,1976,3:125-144.

二级参考文献19

  • 1Markowitz H M. Portfolio Selection. Journal of Finance, 1952, 7(1): 77-91.
  • 2Merton R C. Optimum Consumption and Portfolio Rules in a Continuous-time Model. Journal of Economic Theory, 1971, 3(4): 373-413.
  • 3Cvitanic J, Karatzas L Hedging and Portfolio Optimization under Transaction Costs: a Martingale Approach. Mathematical Finance, 1996, 6(2): 133-165.
  • 4Shreve S E, Soner H M. Optimal Investment and Consumption with Transaction Costs. The Annals of Applied Probability, 1994, 4(3): 609-692.
  • 5Li D, Ng L. Optimal Dynamic Portfolio Selection: Multi-period Mean-variance Formulation. Math- ematical Finance, 2000, 10(3): 387-406.
  • 6Zhou X Y, Li D. Continaous-time Mean-variance Portfolio Selection: a Stochastic LQ Framework. Applied Mathematics and Optimization, 2000, 42(1): 19-33.
  • 7Li X, Zhou X Y, Lim A E 13. Dynamic Mean-variance Portfolio Selection with No-shorting Constraints. SIAM Journal on Control and Optimization, 2002, 40(5): 1540-1555.
  • 8Fu C P, Lari-Lavassani A, Li X. Dynamic Mean-variance Portfolio Selection with Borrowing Con- straint. European Journal of Operational Research, 2010, 200(1): 312-319.
  • 9Lim A E B, Zhou X Y. Mean-variance Portfolio Selection with Random Parameters in a Complete Market. Mathematics of Operations Research, 2002, 27(1): 101-120.
  • 10Lim A E B. Quadratic Hedging and Mean-variance Portfolio Selection with Random an Incomplete Market. Mathematics of Operations Research, 2004, 29(1): 132-161.

共引文献5

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部