期刊文献+

热方程的一些端点估计及其在Navier-Stokes方程中的应用

Some endpoint estimates for heat equation with application to Navier-Stokes equations
原文传递
导出
摘要 本文首先讨论热方程初值问题的解在Hardy、BMO(bounded mean oscillation)和Besov型空间中的估计.然后本文结合Coifmann-Lions-Meyer-Semmes在Hardy空间中的补偿紧性结果,给出Navier-Stokes方程整体弱解的二阶导数的一些端点估计. We obtain some estimates in Hardy, BMO and Besov spaces for solutions to the initial value problem of heat equation. Combined with Coifmann-Lions-Meyer-Semmes' result on compensated compactness in Hardy spaces, we also give some endpoint estimates for the second order derivatives of global weak solutions to Navier- Stokes equations.
机构地区 南京大学数学系
出处 《中国科学:数学》 CSCD 北大核心 2014年第5期423-434,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171145和11301262)资助项目
关键词 HARDY空间 BMO空间 BESOV空间 热方程 NAVIER-STOKES方程 Hardy space BMO space Besov spaces heat equation Navier-Stokes equations
  • 相关文献

参考文献20

  • 1Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129:137-193.
  • 2Grafakos L. Modern Fourier Analysis. Graduate Texts in Mathematics, 250. New York: Springer, 2009.
  • 3Stein E M. Harmonic Analysis. New Jersey: Princeton University Press, 1993.
  • 4Coifman R, Lions P L, Meyer Y, et al. Compensated compactness and Hardy spaces. J Math Pures Appl, 1993, 72: 247-286.
  • 5Lions P L. Mathematical Topics in Fluid Dynamics, vol. 1. Incompressible Models. Oxford: Oxford Science Publica- tion, 1996.
  • 6Fabes E B, Rivire N M. Singular integrals with mixed homogeneity. Studia Math, 1966, 27: 19-38.
  • 7Fabes E B, Lewis J E, Rivire N M. Singular integrals and hydrodynamic potentials. Amer J Math, 1977, 99:601-625.
  • 8Amann H. Linear and Quasilinear Parabolic Problems, I. Basel: Birkh/iuser Verlag, 1995.
  • 9Lady2henskaya O A, Solonnikov V A, Uralt'ceva N N. Linear and Quasi-linear Parabolic Equations. Providence, RI: Amer Math Soc. 1968.
  • 10Calder6n A P, Torchinsky A. Parabolic maximal functions associated with a distribution. Adv Math, 1975, 16:1-64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部