期刊文献+

基于UDWT与Snake模型的多时相SAR图像变化检测方法 被引量:1

MULTITEMPORAL SAR IMAGES CHANGE DETECTION METHOD BASED ON UDWT AND SNAKE MODELS
下载PDF
导出
摘要 提出一种基于非下采样离散小波(UDWT)和Laplace分布假设下Snake模型的多时相SAR图像变化检测方法。该方法首先计算输入SAR图像的对数-比值图像。然后利用非下采样小波分解该对数-比值图像,得到其多尺度表达。最后迭代执行以下两步直到收敛:(1)利用最大似然法估计Laplace分布参数;(2)根据图像数据和上一步估计的参数演化当前曲线。实验结果验证了该方法的有效性。 A multitemporal SAR image change detection method based on undecimated discrete wavelet transform( UDWT) and the Snake models under the assumption of Laplace distribution is proposed in this paper. In the method the log-ratio image inputting to SAR image is firstly calculated. Then the log-ratio image is decomposed by UDWT to obtain the multi-scale representation. The following two steps are iterated afterwards until the convergence is reached:( 1) Estimating the parameters of the Laplace distribution using maximum likelihood method;( 2) Evolving current curve according to the image data and the parameters estimated in last step. Experimental results verify the effectiveness of the proposed method.
作者 付明柏
出处 《计算机应用与软件》 CSCD 北大核心 2014年第4期254-257,277,共5页 Computer Applications and Software
关键词 变化检测 多时相合成孔径雷达(SAR)图像 SNAKE模型 非下采样小波(UDWT) 拉普拉斯(Laplace)分布 Change detection Multitemporal synthetic aperture radar(SAR) images Snake models Undecimated discrete wavelet transform(UDWT) Laplace distribution
  • 相关文献

参考文献12

  • 1李坤,杨然,王雷光,林立宇,秦前清.基于敏感特征向量的SAR图像灾害变化检测技术[J].计算机工程与应用,2012,48(3):24-28. 被引量:5
  • 2苏海民,何爱霞.基于RS和地统计学的福州市土地利用分析[J].自然资源学报,2010,25(1):91-99. 被引量:66
  • 3张瑞,刘国祥,李涛,于冰,徐柱.基于高分辨率TerraSAR-X影像的城市土地利用变化检测[J].铁道勘察,2011,37(4):17-21. 被引量:12
  • 4Bovolo F, Bruzzone L. A Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images [ J ]. IEEE Trans. Geosci. Remote Sens. , 2005, 43 (12): 2963-2972.
  • 5Celik T. A Bayesian approach to unsupervised rnultiscale change de- tection in synthetic aperture radar images[ J]. Signal Process. , 2010, 90(5) : 1471 -1485.
  • 6Chan T F, Vese L A. Active Contours Without Edges [ J ]. IEEE Trans. Image. Process. , 2001, 10(2) : 266-277.
  • 7Chan T F, Sandberg B Y, VESE L A. Active contours without edges for vector-valued images [J]. J. Vis. Commun. Image Represent., 2000, 11(2) : 130-141.
  • 8Bazi Y, Melgani F. A Variational Level-Set Method for Unsupervised Change Detection in Remote Sensing Images[ C]. 2009 IEEE Interna- tional Geoscience and Remote Sensing Symposium, IGARSS 2009. II - 984 - II - 987.
  • 9Celik T, Ma K K. Multitemporal Image Change Detection Using Un- decimated Discrete Wavelet Transform and Active Contours [ J]. IEEE Trans: Geosci. Remote Sens. , 2011,49(2) : 706 -716.
  • 10Osher S, Sethian J. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation [ J ]. J. Comput. Phys. , 1988, 79(1) : 12 -49.

二级参考文献38

  • 1张定祥,李宪文,杨冀红.基于高光谱和高分辨率影像的土地利用数据库更新研究[J].农业工程学报,2004,20(6):272-276. 被引量:13
  • 2童辉,张晓美,何国金.小波和傅立叶变换在图像变化检测上的应用比较[J].计算机工程与应用,2005,41(32):87-88. 被引量:4
  • 3汪太月,李志明.一种广义高斯分布的参数快速估计法[J].工程地球物理学报,2006,3(3):172-176. 被引量:38
  • 4Lambin E F, Baulies X, Bockstael N, et al. Land use and land cover change implementation strategy [ R ]. IGBP Report No. 48, IHDP Report No. 10, Stockholm: IGBP, 1999.
  • 5Kang-tsungChang.地理信息系统导论[M].第3版.陈健飞中文导读.北京:科学出版社,2006.
  • 6J. L. Stack,E. J. Candès,D. L. Donoho. The curvelet transform for image denoising[J]. IEEE Trans. Image Process.,2002,11(6):670-684.
  • 7E. J. Candès. Ridgelets:Theory and application[D]. CA:Stanford University,1998.
  • 8E. J. Candès,L. Demanet,D. L. Donoho et al.. Fast discrete curvelet transforms[J]. Multiscale Model. Simul.,2006,3(5):861-899.
  • 9M. N. Do,M. Vetterli. The contourlet transform:an efficient directional multiresolution image representation[J]. IEEE Trans.Image Process.,2005,14(12):2091-2106.
  • 10D. D. Y. Po,M. N. Do. Directional multiscale modeling of images using the contourlet transform[J]. IEEE Trans. Image Process.,2006,15(6):1610-1620.

共引文献81

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部