期刊文献+

改进的免疫优化算法对动态约束多目标问题的应用 被引量:1

APPLYING IMPROVED IMMUNE OPTIMISATION IN DYNAMIC CONSTRAINT MULTIOBJECTIVE PROBLEM
下载PDF
导出
摘要 基于进化理论的动态多目标优化算法极易陷入局部最优,跟踪动态Pareto有效面的速度及效果较差。基于免疫系统机理提出一种改进的免疫优化算法(DMIOA)用于动态约束多目标问题求解。算法通过抗体浓度及其支配度设计抗体与抗原亲和力,随机约束选择算子提高算法约束处理能力,环境识别算子自适应判断环境变化,根据识别结果以不同的方式产生新环境的初始抗体群。数值实验中,将DMIOA应用于两种动态标准测试问题及飞机减速器参数动态设计问题的求解,结果表明:DMIOA能快速跟踪动态Pareto有效面,且在各环境所获面分布均匀,具有较好的实际问题求解能力。 Dynamic multiobjective optimisation algorithm based on evolution theory is extremely easy to fall into local optimum,and is poor in both speed and effect of tracking the dynamic Pareto effective front. We propose an improved dynamic immune optimised algorithm( DMIOA) based on immune system mechanism for solving the dynamic constraint multiobjective problem. Through antibody's density and its dominated degree,the algorithm designs the affinity of antibody and antigen,the random constraint selection operator to improve the ability of constraint and processing,and the environments recognition operator to adaptively examine the environmental changes,and generates initial antibody population in new environment in different ways according to the recognition result. In numerical experiments,DMIOA is applied to the solutions of two kinds of dynamic standard test problems and the dynamic design problem of airplane speed reducer parameters,the results indicate that the DMIOA can rapidly track the dynamic Pareto effective front,and is evenly distributed on each obtained environmental surface,it has desirable capability on solving practical problems.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第4期293-296,319,共5页 Computer Applications and Software
基金 贵州省科学技术基金项目(黔科合J字20122002) 贵州省教育厅自然科学基金项目(20090074)
关键词 动态环境 多目标优化 免疫算法 动态Pareto有效面 Dynamic environments Multiobjective optimisation Immune algorithm Dynamic Pareto front
  • 相关文献

参考文献10

  • 1Chen R, Zeng W. Multioi3jective Optimization in Dynamic Environ- ment : A Review[ C ]//The 6th International Conference on Computer Science & Education, SuperStar Virgo, Singapore,2011:78 - 82.
  • 2Carlos C,Juan R G,et al. Optimization in dynamic environments-a sur- vey on problems, methods and measures [ J ]. Sofl Comput, 2011,15 : 1427 - 1448.
  • 3Zhang Z, Qian S. Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems [ J ]. Soft Computing,2011,15 (7) : 1333 - 1349.
  • 4Hassan G N A. Multiobjeetive genetie programming for financial portfo- lio management in dynamic environments [ D ]. Doctoral thesis, UCL ( University College London) ,2010.
  • 5Basu S, Bhatia A. A naive Genetic Approach for Non-stationary Con- strained Problems [ J ]. Soft Computing, 2006 ; 10 ( 2 ) : 152 - 162.
  • 6Farina M, Deb K, Amato P. Dynamic multiobjective optimization prob- lems: test case, approximations and applications [ J ]. IEEE Transac- tions on Evolutionary Computation,2004,8 ( 5 ) :425 - 442.
  • 7Deb K, Udaya Bhaskara Rao N, Karthik S. Dynamic Multi-Objective Optimization and Decision-Making Using Modified NSGA-II:A Case Study on Hydro-Thermal Power Scheduling Bi-objective Optimization Problems [ R ]. KanGAL Report,2006.
  • 8钱淑渠,武慧虹.动态多目标免疫算法及其应用[J].计算机工程,2012,38(10):171-174. 被引量:3
  • 9钱淑渠,武慧虹.约束动态免疫算法及对背包问题性能测试研究[J].计算机应用与软件,2012,29(5):155-158. 被引量:4
  • 10张著洪,钱淑渠.自适应免疫算法及其对动态函数优化的跟踪[J].模式识别与人工智能,2007,20(1):85-94. 被引量:14

二级参考文献45

  • 1罗印升,李人厚,张维玺.基于免疫机理的动态函数优化算法[J].西安交通大学学报,2005,39(4):384-388. 被引量:6
  • 2张著洪,钱淑渠.自适应免疫算法及其对动态函数优化的跟踪[J].模式识别与人工智能,2007,20(1):85-94. 被引量:14
  • 3Basu S, Bhatia A. A naive Genetic Approach for Non-stationary Con- strained Problems [J]. Soft Computing-A Fusion of Foundations, Meth- odologies and Applications ,2006,10( 2 ) : 152 - 162.
  • 4ttassan G N A. Multiobjeetive genetic programming for financial portfo- lio management in dynamie environments [ D ]. Doctoral thesis, UCL (University College London) ,2010.
  • 5Yang S, Cheng H, Wang F. Genetic Algorithms with Immigrants and Memory Schemes for Dynamic Shortest Path Routing Problems in Mo- bile Ad Hoc Networks [ J ]. IEEE Transactions on Systems, Man, and Cybernetics Part C : Applications and Reviews, 2010,40 (1) :52 - 63.
  • 6Liu L,Wang D, Yang S. An Immune System Based Genetic Algorithm Using Permutation-Based Dualism for Dynamic Traveling Salesman Problems [ J ]. EvoWorkshops ,2009:725 - 734.
  • 7Jin Y, Branke J. Evolutionary optimization in uncertain environments-A survey [J ]. IEEE Transactions on Evolutionary Computation, 2005,9 (3) :303 -317.
  • 8Cobb H. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstatiouary Environments [ R ]. Technical Report AIC - 90 - 001,1990.
  • 9Grefenstette J. Genetic Algorithms for Changing Environments [ C ]// Maenner R, Manderick B. Parallel Problem Solving from Nature 2. North Holland. 1992 : 137 - 144.
  • 10Simoes A, Costa E. Improving the genetic algorithms performance when using transformation[ C ]//Proc of the 6th International Conference on Neural Networks and Genetic Algorithms ( ICANNGA' 03 ) ,2003 : 175 -181.

共引文献18

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部