期刊文献+

多域边界面法在稳态热传导问题中的应用 被引量:3

Application of Multi-domain Boundary Face Method in Steady State Heat Conduction
下载PDF
导出
摘要 将边界面法应用于多域问题稳态热传导的计算,提出了一种新的实现方法,称之为多域边界面法(MD-BFM).在边界面的基础上,仿照单域问题,推导了多域问题稳态热传导的矩阵组装的方式,得出其离散的边界积分方程,温度等未知量即可求出.将多域边界面法应用于某包含62个浇筑层(共125个域)的大坝的稳态热传导分析,得出其温度场分布图,并和有限元计算结果进行了比较,温度最大值均为20.7℃,且温度分布等值线高度吻合,但多域边界面法采用了更少的网格.对大坝这样的大规模工程问题进行计算的结果证明,本文所提出的多域边界面法可以应用于稳态热传导问题,并且相较于其他方法(例如有限元法),具有同等精度,并且消耗更少的人力. This paper presented a multi-domain boundary face method (MD-BFM) to solve steady-state heat conduction problems in large-scale engineering structures. Based on BFM, and using a similar ap- proach as that in single-domain problems, this paper derived the matrix assembly process in multi-domain problems. Then, temperature and other unknown quantities can be drawn from the discrete boundary integral equation. The multi-domain BFM was developed and applied to the steady state heat conduction analysis of an actual gravity dam, which contained 62 concrete layers (totally 125 domains). In order to veri{y the result, the temperature contours of the dam were compared with the result obtained from FEM (using Abaqus). The comparison chart has shown that the maximum temperature value of both results is 20.7℃. Moreover, the contours are highly consistent. Numerical results have demonstrated that our method can achieve comparable accuracy than other methods (e. g. the FEM) at much lower cost in terms of both computer resources and human labor.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期58-64,共7页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(11172098)
关键词 边界面法 稳态热传导 多域问题 大规模工程应用 boundary face method steady state heat conduction multi-domain problem large scale problem
  • 相关文献

参考文献12

  • 1ZHANG J M, TANAKA M. Fast HdBNM for large-scale thermal analysis of CNT-reinforced composites[J]. Computational Mechanics, 2008, 41:777-787.
  • 2龙述尧.边界单元法概论[M].北京:中国科学文化出版社,2002:214-253.
  • 3HANG J M, YAO Z H, LI H. A hybrid boundary node method[J]. International Journal for Numerical Methods in Engineering, 2002, 53:751-763.
  • 4ZHANG J M, YAOZ H, TANAKA M. The meshless regular hy- brid boundary node method for 2-D linear elasticity[J]. Engineering Analysis with Boundary Elements, 2003, 27:259-268.
  • 5QIN X Y, ZHANG J M, LI G Y,etal. A finite element implemen- tation of the boundary face method for potential problems in three di- mensions[J]. Engineering Analysis with Boundary Elements, 2010, 34 : 934- 943.
  • 6GU J L, ZHANG J M, LI G Y. Isogeometric analysis in BIE for 3- D potential problem[J]. Engineering Analysis with Boundary Ele- ments, 2012,36 : 858- 865.
  • 7GU J L, ZHANG J M, SHENG X M, etal. P,-spline approximation in boundary face method for three dimensional linear elasticity[J]. Engineering Analysis with Boundary Elements,2011,35:1159- 1167.
  • 8GU J L, ZHANG J M, SHENG X M. The boundary face method with variable approximation by b-spline basis function[J]. Interna- tional Journal of Computational Methods, 2012,9: 9- 18.
  • 9ZHUANG C, ZHANG J M, QIN X Y, et al. Integration of subdivi- sion method into boundary element analysis[J]. International Journal of Computational Methods, 2012,9 : 19- 29.
  • 10XIE G Z, ZHANG J M, QIN X Y, et al. New variable transforma- tions for evaluating nearly singular integrals in 2D boundary element method[J]. Engineering Analysis with Boundary Elements, 2011, 35:811-817.

二级参考文献18

  • 1NAMATA T, SUDA R. APTCC: auto parallelizing translator from C to CUDA[J]. Procedia Computer Science,2011,4:352-361.
  • 2Nvidia Corporation. CUDA C programming guide[EB/OL]//(2011- 03-06) [2012-09-05]. http://www, does. nvidia, com/cuda.
  • 3Nvidia Corporation. Parallel programming and computing platform [EB/OL]. (2012-04-13) [2012-09-05]. http://www, nvidia, com/ object/cuda_home_new. html.
  • 4Nvidia Corporation. CUDA C Best Practices Guide[EB/OL]. (2011- 03-06) [2012-09-05]. http://www, docs. nvidia, com/cuda.
  • 5HARRIS C, HAINES K, STAVELEY -SMITH L. GPU accelerated radio astronomy signal convolution[J]. Experimental Astronomy, 2008, 22(1): 129-142.
  • 6CORRIGAN A, CAMELLI F F, LOHNER R, et al. Running un- structured grid-based CFD solvers on modem graphics hardware[J]. International Journal for Numerical Methods in Fluids, 2011, 66(2) : 221-229.
  • 7CRANE K, LLAMAS I, TARIQ S. Real-time simulation and ren- dering of 3d fluids[J]. GPU Gems, 2007, 3:663-675.
  • 8PICHEL J C, RIVERA F F, FERNANDEZ M, et al. Optimization of sparse matrix-vector multiplication using reordering techniques on GPUs[J]. Microprocessors and Microsystems, 2012, 36(2) :65-77.
  • 9CAI Yong, LI Guang-yao, WANG Hu, etal. Development of paral- lel explicit finite element sheet forming simulation system based on GPU architeeture[J]. Advances in Engineering Software, 2012, 45 (1) : 370-379.
  • 10JANUSZEWSKI M, KOSTUR M. Accelerating numerical solution of stochastic differential equations with CUDA[J]. Computer Physics Communications, 2010, 181(1)..183-188.

共引文献4

同被引文献25

  • 1陈海波,金建峰,张培强,吕品.Multi-Variable Non-Singular BEM for 2-D Potential Problems[J].Tsinghua Science and Technology,2005,10(1):43-50. 被引量:2
  • 2龙述尧.边界单元法概论[M].北京:中国科学文化出版社,2002:214-253.
  • 3朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1998.
  • 4ZHANG Jianming, TANAKA M, ENDO M. The hybridboundary node method accelerated by fast multipolemethod for 3D potential problems [J]. InternationalJournal for Numerical Methods in Engineering,2005,63:660-680.
  • 5ZHANG Jianming, YAO Zhenhan, LI Hong. A hybridboundary node method [J]. International Journal forNumerical Methods in Engineering,2002,53:751-763.
  • 6LIU Yijun, CHEN Shaohai. A new form of the hyper-singular boundary integral equation for 3-D acoustics andits implementation with C0 boundary element [J].Computer Methods in Applied Mechanics andEngineering,1999,173:375-386.
  • 7GAO Xiaowei. The radial integration method for evaluationof domain integrals [J]. Engineering Analysis withBoundary Elements,2002,26:905-916.
  • 8CHEN Wen,WANG Fuzhang. A method of fundamentalsolutions without fictitious boundary [J]. EngineeringAnalysis with Boundary Elements,2010,34(5):530-532.
  • 9GUIGGIANI M,GIGANTE N. A general algorithm for thenumerical solution of hypersingular boundary integralequations[J]. Journal of Applied Mechanics,1992,59:604-614.
  • 10GAO Xiaowei. An effective method for numericalevaluation of general 2D and 3D high order singularboundary integrals [J]. Computer Methods in AppliedMechanics and Engineering,2010,199:2856-2864.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部