期刊文献+

具有时滞的微分-代数生物模型的分岔与控制

Bifurcation and Control of Differential-Algebraic Biological Model with Time Delay
下载PDF
导出
摘要 基于公共渔业经济理论,研究了一类带有时滞的食饵-捕食模型.研究表明:不考虑时滞的条件下,模型出现跨临界分岔,奇异诱导分岔,以及鞍结分岔现象,无捕获下,食饵种群与捕食者种群将共存且模型全局渐近稳定.在时滞存在的条件下,模型存在两个正平衡点,模型出现Hopf分岔现象和周期解,而且随着时滞的增加,模型平衡点的稳定性会随之发生变化.设计的状态反馈控制器可以有效消除模型的分岔,控制种群的变化.利用Matlab软件,数值仿真结果验证了结论的正确性. Considering the economic theory of public fishery, a prey-predator bioeconomic model with time delay was studied. It was showed that transcritical bifurcation, singular induced bifurcation and saddle-node bifurcation would occur with no time delay. Under the condition of zero harvesting, prey and predator would be coexisted. With time delay, there existed two positive equilibrium points. Hopf bifurcation and small amplitude periodic solutions would occur, which caused switching of stability. The state feedback controller eliminated bifurcation phenomenon. By using Matlab software, the effectiveness of mathematical conclusions were verified by some numerical simulations.
作者 张雪
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期635-639,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61273008) 辽宁省博士启动基金资助项目(20131026) 中央高校基本科研业务费专项资金资助项目(N120405009)
关键词 微分-代数生物模型 跨临界分岔 奇异诱导分岔 鞍结分岔 HOPF分岔 differential-algebraic bioeconomic model transcritical bifurcation singular inducedbifurcation saddle-node bifurcation Hopf bifurcation
  • 相关文献

参考文献11

  • 1Ling L, Wang W M. Dynamics of a Ivlev-type predator-prey system with constant rate harvesting [ J]. Chaos, Solitons & Fractals,2009,41 (4) :2139 -2153.
  • 2Ji L L, Wu C Q. Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge [J ], Nonlinear Analysis: Real World Applications,2010,11 (4) :2285 - 2295.
  • 3KarT K, Ghorai A. Dynamic behaviour of a delayed predator-prey model with harvesting[ J]. Applied Mathematics and Computation, 2011,217 ( 22 ) : 9085 - 9104.
  • 4Li Y K, Zhang T W, Ye Y. On the existence and stability of a unique almost periodic sequence solution in discrete predator- prey models with time delays [ J ]. Applied Mathematical Modelling ,2011,35 ( 11 ) :5448 - 5459.
  • 5Li F, Li H W. Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey [J ]. Mathematical and Computer Modelling,2012,55 (3/4) :672 - 679.
  • 6Kar T K, Pahari U K. Non-selective harvesting in prey- predator models with delay [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2006,11 ( 4 ) :499 - 509.
  • 7Gordon H S. Economic theory of a common property resource: the fishery [ J ]. Journal of Political Economy, 1954,63 : 116 - 139.
  • 8Zhang X, Zhang Q L, Zhang Y. Bifurcations of a class of singular biological economic models [ J ]. Chaos Solitons & Fractals,2009,40 ( 3 ) : 1309 - 1318.
  • 9Liu W,Fu C J, Chen B S. Hopf bifurcation for a predator- prey biological economic system with holling type II functional response [ J ]. Journal of the Franklin Institute, 2011,348 (6) :1114 - 1127.
  • 10Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields [ M ]. New York: Springer-Verlag, 1983 : 117 - 156.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部