期刊文献+

应用计算机仿真研究混沌及混沌同步 被引量:2

The Application of Computer Simulation in Studying Chaos and Chaos Synchronization
下载PDF
导出
摘要 在混沌应用研究领域 ,计算机仿真方法是继数值分析法、Lyapunov指数分析法和真实实验法之后的另一个非常有效而实用的混沌研究方法。本文通过计算机仿真再现了 Chua电路的混沌信号输出 ;实现了对两个 Chua电路主动—被动混沌同步。仿真实验表明 :(i)在研究电子学信号混沌系统的混沌同步问题时 ,仿真实验与真实实验有较好的对等性 ;(ii)在仿真实验过程中 ,仿真方法对影响系统同步的因素 (如噪声和系统参数变化等因素 )能进行有效控制 ,较之真实实验 。 In the study of chaos and chaos app lications,the methods of numerical analysis,Lyapunov exponential analysis and re al experiment analysis are extensively used.Recently,computer simulation is prov ed very efficient and practical.For the famous Chua's circuit, chaos signals output and chaos synchronzation reappeare by computer simulation i n the paper.The simulation results indicate:(i)The simulation is precise and has reciprocity in the real experiment of chaos systems construct ed with electronic circuits;(ii)The system parameters are cont rolled more easily in simulation,so the stability and robustness of the system a re more precisely analyzed.
作者 王寅平
机构地区 昆明陆军学院
出处 《计算机工程与科学》 CSCD 2000年第6期63-65,71,共4页 Computer Engineering & Science
关键词 混沌 混沌同步 计算机仿真 chaos chaos synchronization computer simulation
  • 相关文献

参考文献5

  • 1[1] Matumoto T,Chua L O,Kamuro M.Double Scroll Via a Two-Transistor Circuit[J].IEEE Trans Circuits & Systems,1986,33(8):828~835
  • 2[2] Carroll T L,Pecora L M.Synchronizing Chaotic Circuit[J].IEEE Trans Circuits & Systems,1991,38(4):453~456
  • 3[3] Cuomo K M,Oppenheim V.Circuit Implementation of Synchronized Chaos with Applications to Communications[J].Phys Rev Lett,1993,71(1):65~68
  • 4[4] Kocarev L,Parlitz U.General Approach for Chaotic Synchronization with Applications to Communication[J].Phys Rev Lett,1995,74(25):5028~5031
  • 5[5] Pyragas K.Predictable Chaos in Slightly Perturbed Unpredictable Chaotic Systems[J].Phys Rev Lett,1993,18(13):203~210

同被引文献11

  • 1WANG XingyuanSchool of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China.Relation of chaos activity characteristics of the cardiac system with the evolution of species[J].Chinese Science Bulletin,2002,47(24):2042-2048. 被引量:21
  • 2倪皖荪,华一满,邓浩,覃团发.混沌通讯[J].物理学进展,1996,16(3):645-656. 被引量:19
  • 3Ott E,Grebogi C, Yorke J A. Controlling Chaos[J]. Phys Rev Lett, 1990,64(11) : 1196-1199.
  • 4Garroll T L. Synchronization in Chaotic System[J]. Phys Rev Lett, 1990,64 (8) : 821-824.
  • 5Kocarev L, Parlitz U, Brown R. Robust Synchronization of Chaotic Systems[J]. Phys Rev Lett,2000,61(4) :2042-2048.
  • 6Kuo C L,Li T H S,Guo N R. Design of a Novel Fuzzy Sliding-Mode Control for Magnetic Ball levitation System [J]. Journal of Intelligent and Robotic Systems, 2005,42 (3):295- 316.
  • 7Yau H-T. Chaos Synchronization Using Fuzzy Logic Controller[J]. Nonlinear Analysis B: Real World Applications,2008, 9(4) : 1800-1810.
  • 8J H Lü G R Chen, S C Zhang. Dynamical analysis of a new chaotic attractor coined [J]. Int. J. of Bifurcation and chaos, 2002, 12(5).
  • 9L M Pecora, T L Carroll. Synchronization in chaotic systems [J]. Phys. Rev. Lett. , 1990, 64(8): 821-824.
  • 10L M Pecora, T L Carroll. Driving Systems with Chaotic Signals [J]. Phys Rev A, 1991,44(4): 2374-2383.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部