期刊文献+

基于数据挖掘的普通话韵律规则学习 被引量:2

Data Mining for Learning Mandarion Prosodic Models
下载PDF
导出
摘要 普通话韵律规则对于语音合成和语音学研究具有重要意义 .为了更有效地进行韵律规则学习 ,该文利用数据挖掘技术从语料库中提取规则 .通过聚类分析进行基频模式提取 ,并以此进行基频序列的离散化 ;由语言学分析的结果得出训练句子中每个音节的参数 ,利用决策树和神经网络学习音节的韵律变化规则 .测试表明基于数据挖掘的韵律规则学习取得了较好的结果 ,证实了方法的有效性 . Mandarin prosodic models are very important in speech research and speech synthe sis, which mainly describess the variation of pitch. The models that are now being u sed in most Chinese Text\|To\|Speech systems are constructed by expert, qualitatively an d with low precision. In this paper, Data Mining is used to extract more accurate prosodic pattern s from actual large mandarin speech database to improve the naturalness and intelligibility of synth esized speech. In data preprocessing, typical prosody models are found by clustering analysis, a nd the original pitches extracted from sentences are discrete with classic pitch models. These clusters together with some linguistic features (including tone combination, word length, part\|of \|speech (POS), syllable position in word, word position in phrase) obtained by text parsing are use to acquire training data. ANN and Decision tree are trained respectively using above integr ated data to learn the variation prosody models of pitch. Two decisino trees are construc ted for predicting the classic pitch model and length of pitch based on C4.5, and BackPropagation(BP) network is used to learn the mapping between the linguistic features and the mean value of pit ch. Encouraging experimental results show the effectiveness of the proposed method base on Data Mining.
作者 朱廷劭 高文
出处 《计算机学报》 EI CSCD 北大核心 2000年第11期1179-1183,共5页 Chinese Journal of Computers
基金 国家自然科学基金重点项目!(6 978930 1) 国家"八六三"高技术研究发展计划!(86 3-30 6 -ZD0 3-0 1-2 ) 中科院百人计划资助
关键词 数据挖掘 语音合成 语音学 普通话韵律规则 prosodic rule, data mining, clustering, decision tree, neural network
  • 相关文献

参考文献1

共引文献81

同被引文献17

  • 1陆安生,陈永强,屠浩文.决策树C5算法的分析与应用[J].电脑知识与技术(技术论坛),2005(3):17-20. 被引量:16
  • 2张家旺,韩光胜,张伟.C5.0算法在RoboCup传球训练中的应用研究[J].计算机仿真,2006,23(4):132-134. 被引量:11
  • 3牟吉元等.农业昆虫学[M].北京:中国农业科技出版社.1995.121-168.
  • 4薛微,陈欢歌.Clementine数据挖掘方法及应用[M].北京:电子工业出版社,2010.
  • 5HHLLMANN C A, FOPPEN R P B, VAN TURNHOUT C A M, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations[J]. Nature, 2014, 511(7509): 341-343.
  • 6SIRAJ A S, SANTOS-VEGA M, BOUMA M J. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia[J]. Science, 2014, 343(6175): 1154-1158.
  • 7PIYARATNE M K D K, ZHAO H Y, HU Z Q, et al. A model to analyze weather impact on aphid population dynamics: an application on swallow tail catastrophe model[J]. European Scientific Journal, 2014, 10(18): 1857-7431.
  • 8DEBORAH J T, ART J D, FRAN~OISE A B, et al. Forecasting aphid outbreaks and epidemics of cucumber mosaic virus in lupin crops in a Mediterranean-type environment[J]. Virus Research, 2004, 100(1): 67-82.
  • 9LUO J H, HUANG W J, ZHAO J L, et al. Predicting the probability of wheat aphid occurrence using satellite remote sensing and meteorological data[J]. Optik, 2014, 125(19): 5660-5665.
  • 10QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1985, 1(1): 81-106.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部