摘要
常规的风电场功率预测建模主要方法是将数值天气预报产生的气象要素输入基于历史scada数据建立统计模型,得到全场预报总功率。但是新投产的风电场没有历史scada数据,而风电场功率预测的准确性主要依赖于短期风速预报的精度。因此,为提高新投产风电场功率预测的准确性,短期风速预报的建立是基于数值气象预报的物理模型和统计模型相结合的方式。首先,通过数值气象模式输出风电场测风塔处轮毂高度层的气象要素;其次,通过建立神经网络模型和多元线性回归两种统计方法对模式输出数据进行修正;最后,对误差的来源进行分类分析。在江苏某风场的测试结果表明,较传统的方式,预测精度有了明显的提高,该方法能够消除数值气象预报的振幅偏差,但相位偏差仍是误差的主要来源。
Conventional wind power prediction method primarily uses numerical weather prediction to generate historical scada data and build statistical model,by which the total power prediction is made. As the new wind farm could not collect historical scada data,the accuracy of the wind farm power prediction relies on the accuracy of short-term wind speed prediction. Therefore,to improve the accuracy of wind power prediction for new wind farm,the short-term wind speed prediction is established based on the combination of physical and statistical models of numerical weather prediction. First,the numerical weather model is used to output the meteorological element at turbine hub height layers. Second,the output data are corrected by the establishment of neural network model and multiple linear regression model. Finally,sources of errors are classified and analyzed. Results of wind farm test in Jiangsu province indicate that,compared with traditional methods,this method can significantly improve the accuracy of wind speed prediction and eliminate the amplitude deviation of numerical weather prediction. It is also observed that the phase deviation is still kept as the main error source.
出处
《电测与仪表》
北大核心
2014年第9期57-60,共4页
Electrical Measurement & Instrumentation
关键词
新投产风电场
短期风速预报
物理模型
统计模型
误差
new wind farm
short-term wind speed prediction
physical model
statistical model
error