期刊文献+

靶场光测图像实时判读系统设计与方法 被引量:3

System design and method research for optical measurement images real-time interpretation in test ranges
下载PDF
导出
摘要 研究了靶场光学测量图像实时判读的若干关键技术,并据此设计实现了一套实时判读解算系统。目标自动捕获、跟踪和判读特征高精度定位是实时判读的难点问题,分别采用了形状相似度分析、在线区域跟踪学习、迭代轮廓匹配定位多判读点等技术;在此基础上,根据实时处理的时效性要求高、可并行程度强以及流程时序严格等特点,采纳分布式架构融合业务流程管理的软件体系结构设计模式,实现了数据与流程的集中管理、多站图像并行判读、数据驱动的解算方法自动选择与友好的用户界面。以航空靶场空中发射试验任务为例,通过实验验证了系统的可行性和时效性。该系统可扩展应用于各类靶场试验,满足用户实时获取并分析武器试验数据的需求。 Some key issues of real-time interpretation for optical measurement images in test ranges to design were researched and a real-time interpretation and estimation system was realized. Automatic Target capture,tracking and high precision location for interpretation features are the questions under probe. Shape similarity analysis,online region tracking and learning,and iterative contour registration were respectively used to locate multiple interpretation points. Based on the characteristics of real-time processing,such as high efficiency requirement,strong parallelism capability, and rigorous sequence in time,the software architecture design pattern of distributed framework with business process management was adopted to achieve the centralized administration of data and process,multiple sites parallel interpretation,data-driven auto estimation method selection and friendly user interface. Take the aerial launching tests of the air ranges as an example,the feasibility and efficiency of the system was examined by the experiment. The system can be extended to various test ranges to meet the users' need of weapon test data's real-time gain and analysis.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2014年第2期168-174,共7页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(11272347)
关键词 靶场光学测量 图像实时判读 实时判读解算系统 航空靶场 test ranges optical measurement real-time image interpretation real-time interpretation and estimation system air ranges
  • 相关文献

参考文献11

  • 1Image Systems. TrackEye [ EB/OL ]. ( 2013 - 08 ). http:// wwww. imagesystems, se/.
  • 2刘晓春,于起峰,雷志辉,侯旺.机载平台野外立体场景弱小变化目标检测[J].国防科技大学学报,2012,34(6):130-135. 被引量:1
  • 3Wu Y, Lim J, Yang M H. Online object tracking: a benchmark [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013:2411 - 2418.
  • 4Schweiger F, Zeisl B, Georgel P F. Maximum detector response markers for SIFT and SURF [ C ]//Proceedings of Vision, Modeling and Visualization Workshop, 2009 : 145 - 154.
  • 5Ahn S J, Rauh W. Circular coded target for automation of optical 3D-measurement and camera calibration [ J ]. Intemational Journal of Pattem Recognition and Artificial Intelligence, 2001, 15(6): 905-919.
  • 6Besl P J, McKay N D. A method for registration of 3 - D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2) : 239 -256.
  • 7Suzuki S. Topological structural analysis of digitized binary images by border following [ C ]//Proceedings of Computer Vision , Graphics, and Image Processing, 1985,30 ( 1 ) : 32 -46.
  • 8Flusser J, Suk T. Pattern recognition by affine moment invariants [ J ]. Pattern Recognition, 1993, 26 ( 1 ) : 167 - 174.
  • 9Kalal Z, Mikolajczyk K, Matas J. Tracking-learuing- detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
  • 10Muja M, Lowe D G. Fast approximate nearest neighbors with automatic algorithm configuration [ C ]//Proceedings of VisApp International Conference on Computer Vision Theory and Applications, 2009 : 331 - 340.

二级参考文献13

  • 1Jun-ZhouHuang,Tie-NiuTan,LiMa,Yun-HongWang.Phase Correlation Based Iris Image Registration Model[J].Journal of Computer Science & Technology,2005,20(3):419-425. 被引量:3
  • 2Radke R J, Andra S, Al-kofahl O. Image change detection algorithms: a systematic survey [ J ]. IEEE Trans. on Image Processing, 2005, 14(3) : 1 -14.
  • 3Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [ C ]//Proceedings CVPR, 1999, 246 - 252.
  • 4Hayman E, Eklundh J. Statistical background subtraction for a mobile observer [ C ]//Proceedings ICCV, 2003,789 - 796.
  • 5Barnich O, Van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences [ J ]. IEEE Trans. on Image Processing, 2011, 20 ( 6 ) : 1709 - 1724.
  • 6Baker S, Matthews L. Lucas-kanade 20 years on: a unifying framework [ J ]. International Journal of Computer Vision, 2004, 56(3) : 221 -255.
  • 7Gruen A W. Adaptive least squares correlation a powerful image matching technique [ J ]. Remote Sensing and Cartography, 1985, 14 (3): 175- 187.
  • 8David G, Low E. Distinctive image features from scale-invariant key points [ J ]. International Journal of Computer Vision, 2004, 60(3) - 91 -110.
  • 9Ackermann F. Digital image correlation: performance and potential application in photogrammetry [J]. Remote Sensing and Cartography, 1984, 12 (1):273-282.
  • 10于起峰,雷志辉,刘晓春,李强,朱宪伟.基于生物视觉的目标匹配原理与实验进展[J].红外与激光工程,2008,37(6):1092-1094. 被引量:4

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部