期刊文献+

一类非线性三阶三点边值问题的多个正解 被引量:8

Multiple Positive Solutions for a Nonlinear Third-order Three-point Boundary Value Problem
下载PDF
导出
摘要 利用Williams-Leggett不动点定理,讨论非线性三阶三点边值问题u″'(t)+h(t)f(u(t))=0,0≤t≤1 u(0)=u'(0)=0,u(1)=αu'(η),获得到了至少三个正解的存在性结果。 The following nonlinear third-order three-point boundary value problem was studied{u″'( t) + h( t) f( u( t)) = 0,0 ≤ t ≤ 1 (0) = u'(0) = 0,u(1) = αu'( η),by using the Williams-Leggett fixed-point theorem; the new existence uresults of three positive solutions was obtained.
作者 吴红萍
出处 《贵州大学学报(自然科学版)》 2014年第2期4-6,共3页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金(11261053) 甘肃省自然科学基金(1308RJZA125)
关键词 三阶三点边值问题 不动点 正解 third-order three-point boundary value problem fixed-point positive solutions
  • 相关文献

参考文献2

二级参考文献9

  • 1GREGUS M. Third Order Linear Differential Equations[M]. Dordrecht: Reidel, 1987.
  • 2ANDERSON D R. Green's function for a third-order generalized right focal problem[J]. J Math Anal Appl, 2003, 288: 1-14.
  • 3SUN Yong-ping. Positive solutions of singular third- order three-point boundary value problem [J]. J Math Anal Appl, 2005, 31}6: 589-603.
  • 4GUO Li-jun, SUN Jian-ping, ZHAO Ya-hong. Existence of positive solution for nonlinear third-order three-point boundary value problem[J]. Nonl Anal, 2008, 68z 3151-3158.
  • 5SUN Yong-ping. Positive solutions for third-order three-point nonhomogeneous boundary value problems[J]. Appl Math Lett, 2009, 22: 45-51.
  • 6GUO D J, LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones [M]. New York.. Academic Press, 1988.
  • 7Yosida,K.Functional analysis, (4th Edition)[]..1978
  • 8Krasnosel’skii,M.A.Positive solutions of operator equations[]..1964
  • 9孙建平,金翻霞,曹珂.带参数的三阶m-点边值问题的单调正解[J].山东大学学报(理学版),2010,45(12):40-47. 被引量:4

共引文献69

同被引文献46

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部