期刊文献+

灰色关联理论在泡沫温拌沥青生产关键参数优选中的应用研究 被引量:3

The Optimization Studies of Foam Warm Mix Asphalt Production Critical Parameter Based on Gray Relative Theory
下载PDF
导出
摘要 为了更好地对沥青发泡效果进行控制,保证泡沫沥青的生产质量,优选出最关键的影响因素及最佳用量显得十分必要。首先对道路石油沥青和SBS改性沥青在不同的沥青加热温度、发泡用水量、发泡用水温度条件下,分别进行泡沫温拌试验,得出与之相对应的最大膨胀率、半衰期的试验数据。分析出发泡用水量为最重要的影响因素。然后,通过灰色关联理论对三种不同的影响因素与泡沫沥青的最大膨胀率、半衰期进行关联程度的分析,验证了之前对数据的分析结果。最终得出,泡沫沥青生产最关键的影响因素为发泡用水量,道路石油沥青最佳用水量在2%左右,SBS改性沥青最佳用水量在3%左右。 First of all,on the condition of the different asphalt heating temperature,foaming water consumption,foaming water temperature,the foaming test for the asphalt and the SBS modified asphalt were carried out respectively,then the test data were obtained which are corresponding to the maximum expansion ratio and the half-life period. The most important influence factors of water consumption were analyzed. After that,by means of the gray relative theory,the degree of correlation between three important factors and the maximum expansion ratio,the half-life period were analyzed. Finally it is concluded that the key influencing factors of foam asphalt production is water consumption. Asphalt optimum water consumption is about 2%,the SBS modified asphalt optimal water consumption is about 3%.
出处 《贵州大学学报(自然科学版)》 2014年第2期119-123,共5页 Journal of Guizhou University:Natural Sciences
基金 江苏省交通运输厅科研项目(2012Y39)
关键词 泡沫沥青 灰色关联理论 最大膨胀率 半衰期 foam asphalt grey correlation theory maximum expansion ratio the half-life period
  • 相关文献

参考文献8

二级参考文献26

  • 1任子武,伞冶.实数遗传算法的改进及性能研究[J].电子学报,2007,35(2):269-274. 被引量:42
  • 2邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1996.1-100.
  • 3-.公路工程沥青及沥青混合料试验规程[M].人民交通出版社,1993..
  • 4HuangYJ, Yin C L, Zhang J W. Design of an energy management strategy for parallel hybrid electric vehicles using a logic threshold and instantaneous optimization method [J].International Journal of Automotive Technology, 2009, 10 (4) : 513.
  • 5Morteza Montazeri Gh, Amir Poursamad, Babak Ghalichi. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles[J]. Journal of theFranklin Institute, 2006(343): 420.
  • 6Piccolo A, Ippolito L, Galdi V, et al. Optimization of energy flow management in hybrid electric vehicles via genetic algorithms [ C]//Proceedings of IEEE/ASME International Conference onAdvanced Intelligent Mechatronics, Edinburgh: ASME, 2001: 434-439.
  • 7Huang B, Wang Z, Xu Y. Multi-objective genetic algorithm for hybrid electric vehicle parameter optimization [C]// Proceeding IEEE International Conferrence on IntelligentRobots and Systems, Washington: IEEE, 2006 : 5177 - 5182.
  • 8HU Xiaolin, WANG Zhongfan, LIAO Lianying. Multi-objective optimization of HEV fuel economy and emissions using evolutionary computation[J].SAE Paper,2004(1) :1153.
  • 9ZHANG Bingzhan, CHEN Zhihang, MI Chris, et al. Multi- objective parameter optimization of a series hybrid electric vehicle using evolutionary algorithms [C]//The 5th IEEEVehicle Power and Propulsion Conference. Washington: IEEE, 20091921 - 925.
  • 10Wu J, Zhang C H, Cui N X. PSO algorithm-based parameter optimization for HEV powertrain and its control strategy[J]. International Journal of Automotive Technology, 2008, 9(1):53.

共引文献62

同被引文献31

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部