期刊文献+

低山丘陵区土壤-景观模型的可移植性研究

The Study of Soil-Landscape Model Transportability at Hilly and Mountainous Area
下载PDF
导出
摘要 为了分析在相似地形和成土环境中土壤-景观模型的可移植性,以西南丘陵山地区为研究对象,选取面积约2 km2的区域作为土壤-景观模型的建立区域,利用逐步线性回归方法建立该区的定量土壤-景观模型,并以此建模区域为缓冲中心,在研究区划分出4个不同的模型移植区域(分别记作A、B、C、D区)。结果表明,土壤-景观模型的预测结果在整体上具有较高的准确性;离建模区域越远,平均绝对误差(MEA)和均方根误差(RMSE)均有逐渐增大的趋势,说明随着距离的增大,预测精度降低;在4个区域中,相对误差(RE)都有一定比例大于20%,且距建模区域越远,相对误差(RE)大于20%的比例越大,相对误差(RE)小于10%的比例逐渐减小。 In soil science, the studies of quantitative soil-landscape models have become very active in recent years. However, transportability of these models to unsampled landscapes is still unknown. In this study, a 2 km2typical hilly study area in southwestern China was chosen as the origin spot. And the soil-landscape model in origin area was built by using multiple stepwise regression with the data of soil properties and terrain attributes. Based on the distance from the origin spot, the study area was divided into 4 regions(denoted A, B, C, D area). All these 4regions which had similar terrain and soil environment were used to analyze the transportability of the soil-landscape model. The results showed that: soil-landscape model got predictions with high accuracy level in general. As the distance from origin spot increases, the mean absolute error(MEA) and root mean of squared error(RMSE) had shown a tendency to increase as well. These meant the accuracy of prediction was reduced with the distance. However, when the distance reached to a threshold the accuracy was no lower any more. In 4 regions A, B, C and D, there were proportions that the relative error(RE) was more than 20%. And the farther from origin area, the greater they became. Meanwhile the proportion that relative error(RE) was less than 10% decreased gradually.
出处 《中国农学通报》 CSCD 2014年第8期186-191,共6页 Chinese Agricultural Science Bulletin
基金 重庆市科委自然科学基金计划资助项目"基于GIS的土壤-景观定量模型研究"(CSTC 2010BB1008)
关键词 地形 模型 土壤 可移植性 topography models soils transportability
  • 相关文献

参考文献17

  • 1Jenny H. Factors of Soil Formation, a System of Quantitative Pedology[M] .New York: MoGraw-HiU, 1941:7- 8.
  • 2Thompson J A, Eugenia M, Pena Y, et al. Soil-landscape modeling across a physiographic region: Topographic patterns and model transportability[J].Geoderma,2006,133:57-70.
  • 3Moore I D, Gesslcr P E, Nielson G A, et al. Soil attribute predict ion using terrain analysis[J].Soil Sci. Soc. Am. J.,1993,53:443-452.
  • 4Gessler P E, Chadwick O A, Chamran F, et al. Modeling Soil- Landscape and Ecosystem Properties Using Terrain Attributes[J]. Soil Sci. Soc. Am. J,2000,64(6):2046-2056.
  • 5Gesslcr P E, Moore I D, McKenzie, et al. Soil-landscape modeling and the spatial prediction of soil attributes[J].Int. J. Geogr. Inf. Syst, 1995,9:421-432.
  • 6Bell, J C, Cunningham, R L, Havens, M.W. Calibration and validation of a soil- landscape model for predicting soil drainage class[J].Soil Sci. Soc. Am. J, 1992,56:1860-1866.
  • 7Bell J C, Curmingham R L, Havens M W. Soil drainage class probability mapping using a soil-landscape model[J] Soil Sci. Soc. Am. J,1994,58:464-470.
  • 8Thompson J A, Bell J C, Buffer C A. Quantitative soil-landscape modeling for estimating the areal extent of hydromorphic soils[J]. Soil Sci. Soe. Am. J,1997,61:971-980.
  • 9Thompson J A, Kolka R K. Soil carbon storage estimation in a central hardwood forest watershed using quantitative soil-landscape modeling[J].Soil Sci. Soc. Am. J,2005,69:1086-1093.
  • 10Chaplot V, Walter C, Curmi P. Improving soil hydromorphy prediction according to DEM resolution and available pedological data[J].Geoderma. 2000,97:405-422.

二级参考文献37

  • 1秦承志,朱阿兴,李宝林,裴韬,周成虎.基于栅格DEM的多流向算法述评[J].地学前缘,2006,13(3):91-98. 被引量:41
  • 2乔建平,朱阿兴,吴彩燕,田宏岭.采用本底因子贡献率法的三峡库区滑坡危险度区划[J].山地学报,2006,24(5):569-573. 被引量:22
  • 3秦承志,杨琳,朱阿兴,李宝林,裴韬,周成虎.平缓地区地形湿度指数的计算方法[J].地理科学进展,2006,25(6):87-93. 被引量:23
  • 4Shary P A, Sharaya L S, Mitusov A V. Fundamental Quantitative Methods of Land Surface Analysis. Geoderma, 2002, 107 : 1 - 32.
  • 5Jenness J. Calculating Landscape Surface Area from Digital Elevation Models. Wildlife Society Bulletin, 2004, 32 (3) : 829 - 839.
  • 6Riley S J, de Gloria S D, Elliot R. A Terrain Ruggedness Index That Quantiges Topographic Heterogeneity. Intermountain Journal of Sciences, 1999, 5(1 -4) : 23 -27.
  • 7Gallant J C, Wilson J P. Primary Topographic Attributes. // Willson J P, Gallant J C. eds. Terrain Analysis: Principles and Application. New York: John Wiley & Sons Inc. , 2000:51 - 85.
  • 8Mark D M. Geomorphometric Parameters: A Review and Evaluation. Geografiske Annaler, 1975, 57A: 165 - 177.
  • 9Park S J, van de Giesen N. Soil-landscape Delineation to Define Spatial Sampling Domains for Hillslope Hydrology. Journal of Hydrology, 2004, 295 : 28 - 46.
  • 10Fels J, Matson K. A Cognitively-based Approach for Hydrogeomorphic Land Classification Using Digital Terrain Models. // NCGIA-National Center for Geographic Information and Analysis. Third International Conference/ Workshop on Integration GIS and Environmental Modeling, Santa Fe, NM, USA, January 21 -25, 1996.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部