期刊文献+

局部非负稀疏编码的高光谱目标检测方法研究 被引量:6

Hyperspectral Image Target Detection Approach Based on Local Non-negative Sparse Coding
下载PDF
导出
摘要 基于稀疏编码的高光谱图像处理算法能够挖掘高光谱高维数据空间中潜在的数据相关性,能自然地贴近光谱信号的本质特征。本文提出基于局部非负稀疏编码的高光谱目标检测算法。与经典稀疏编码模型相比,非负稀疏编码对编码系数进行非负约束,一方面使得线性编码具有明确的物理解释,另一方面增强了系数的可分性与稳健性。算法首先通过双窗口设计构造局部动态字典,然后利用目标和背景在动态字典上编码的稀疏性差异进行阈值分割最后通过统计判决实现目标检测。仿真数据以及真实数据实验结果证明了算法的有效性。 Sparse representation based hyperspectral image processing methods can excavate potential relationship in high-dimensional hyperspectral data and reveal the essential characteristic of spectral signal. In this paper a novel hyper- spectral image target detection algorithm based on local non-negative sparse coding is presented. Compared with classical sparse representation methods, the linear coding coefficients are enforced non-negative. On one side the linear coding process has tangible physical interpretation. On the other side the coding coefficients are proved more discriminative and ro- bust. The locally dynamic dictionary is first constructed with atoms which are produced by a sliding dual window strategy. Then non-negative coefficients of each pixel are calculated with the dynamic dictionary. The discrimination between targets and background is based on the sparsity of the coefficients. We carried extensive experiments on both simulated and real data to verify the effectiveness of the proposed method.
出处 《信号处理》 CSCD 北大核心 2014年第5期561-568,共8页 Journal of Signal Processing
基金 国家自然科学基金项目(61303186) CAST创新基金项目(CAST201216)
关键词 高光谱目标检测 非负稀疏编码 滑动双窗口 动态字典 hyperspectral target detection non-negative sparse coding sliding dual window dynamic dictionary
  • 相关文献

参考文献4

二级参考文献34

  • 1[1]Marcus Stavos Stefanou, Richard c Olsen, Herschel H Loomis. Signal Perspectives of Hyperspectral Imagery Analysis Techniques[R], 1998, AD-A333 254.
  • 2[2]Dimitris Manolakis, Chrisitina Siracusa, David Marden, et al. Hyperspectral adaptive matched filter detectors:Practical performance comparison[J]. SPIE, 2001, 4381: 18-33.
  • 3[3]Joseph C Harsanyi, CheinI Chang. Hyperspectral image classifacation and dimensionality reduction: An orthogonal subspace projection approach[J]. IEEE Trans. On Geoscience and Remote sensing, 1994, 32(4): 779-785.
  • 4[4]Schaum A. Spectral subspace matched filtering[J]. SPIE, 2001, 4381: 1-17.
  • 5[5]David Gillis, Peter Palmadesso, Jeffrey Bowles. An automatic target recognition system for hyperspectral imagery using ORASIS[J]. SPIE, 2001, 4381: 34-43.
  • 6[6]Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(7): 29-43.
  • 7[7]Peter j Verveer, Robert P W Duin. An evaluation of intrinsic dimensionality estimators[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1995, 17(1): 81-85.
  • 8[8]Bruske J, Sommer G. Intrinsic dimensionality estimation with optimally topology preserving maps[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1998, 20(5): 572-575.
  • 9JINN M Y, PAO T Y, BOR C K. A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3) : 1279-1293.
  • 10MAHESH P, GILES M F. Feature selection for classification of hyperspectral data by SVM [J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2010, 48(5) : 2297 -2307.

共引文献87

同被引文献64

  • 1李小文,曹春香,常超一.地理学第一定律与时空邻近度的提出[J].自然杂志,2007,29(2):69-71. 被引量:112
  • 2张雄伟,等.现代语音处理技术及应用[M].北京:机械丁业出版社,2009.
  • 3David L D. Compressed sensing[ J]. IEEE Transac- tions on Information Theory, 2006, 52 ( 4 ): 1289-1306.
  • 4He Ran, Zheng Weishi, Hu Baogang, et al. Two-stage nonnegative sparse representation for large-scale face rec- ognition[ J~. IEEE Transaetions on Neural Networks and Learning Systems, 2013, 24( 1 ): 35-46.
  • 5Tropp J A, Gilbert A C. Signal recovery from random measurement via orthogonaI matching pursuit [ J ]. IEEE Transactions on Information Theory, 2007, 53 ( 12 ) : 4655-4666.
  • 6Needell D, Tropp J. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied and Com-putational Hm'monic Analysis, 2009,26(3): 301-321.
  • 7Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery [ Jl- Communications on Pure and Applied Mathematics, 2010,63(1): 1-38.
  • 8Cand~s E J, Wakin M B, Boyd S. Enhancing sparsity by reweighted lI Minimization[ J ]. Journal of Fourier Analy- sis and Application, 2008,14 ( 5- 6) : 877-905.
  • 9Kim S J, Koh K, Lustig M, et al. A method for large- scale lI-regularized least squares [ J 3. IEEE Journal on Selected Topics in Signal Processing, 2007, 1 ( 4 ) : 606-617.
  • 10O' Grady P D, Riekard S T. Compressive sampling of non-negative signals [ C ]//IEEE Workshop on Machine Learning for Signal Processing ( MLSP' 08 ). Cancun, Mexico: 1EEE, 2008: 133-138.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部