期刊文献+

采用奇异值分解的图像模糊区域检测分割新方法 被引量:5

An Image Blurred Region Detection and Segmentation New Method Using Singular Value Decomposition
下载PDF
导出
摘要 针对局部模糊图像的模糊区域检测分割问题,提出了一种改进的基于奇异值分解和图像抠图的模糊区域自动检测分割算法。首先,采用分块的方法对局部模糊图像进行再次模糊,通过比较前后图像块的奇异值特征变化差异将其标识模糊块或清晰块以得到一个标识图。其次,根据标识图,结合图像抠图技术对图像的局部模糊区域进行自动提取。实验结果表明,该方法可以较为精确地检测并分割出局部模糊图像中的模糊区域。 Partially blurred images caused by motion or out of focus are common in life, we need to detect and segment blurred image region when doing some multimedia analyzing tasks. As for the problem of blurred region detection and seg- mentation of partially blurred images, we propose a method based on singular value decomposition and image matting is presented in this paper. Making use of the different changes of image blurred regions and clear regions under a low- pass fihering, partially blurred image is firstly partitioned into patches and each image patch is re-blurred by a Gaussi- an function, then a trimap is got after comparing the singular value feature difference of the patches to distinguish blurred regions and clear regions. Secondly, a image matting technique is combined with the trimap to automatically segment blurred regions from the partially blurred images. Experiments show that this method can detect and segment the blurred regions accurately.
出处 《信号处理》 CSCD 北大核心 2014年第5期569-574,共6页 Journal of Signal Processing
基金 国家自然科学基金(61062014)
关键词 图像模糊 奇异值分解 模糊区域分割 图像抠图 image blur singular value decomposition blur region segmentation image matting
  • 相关文献

参考文献11

  • 1Hsu P, Chen B Y. Blurred Image Detection and Classifi- cation[ C ]//Proceedings of 14th international conference on Advances in Multimedia Modeling. Kyoto, Japan: ACM Press, January 2008, 4903 : 277-286.
  • 2Liu R, Li Z, Jia J. Image partial blur detection and clas- sification[ C] //Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition. Anchorage Alaska: IEEE Press, June 2008 : 1-8.
  • 3Tai Y, Brown M S. Single image defocus map estimation using local contrast prior[ C]//Proceedings of 16th IEEE International Conference on Image Processing. Cairo: IEEE Press, November 2009 : 1797-1800.
  • 4Zhuo S, Sim T. Defocus map estimation from a single im- age[J]. Pattern Recognition, 2011,44(9) : 1852-1858.
  • 5Grimaldi D, Kurylyak Y, Lamonaca F. Detection and pa- rameters estimation of locally motion blurred objects [ C ]// Proceedings of 6th IEEE International Conference on Intel- ligent Data Acquisition and Advanced Computing Systems. Prague, Czech Republic : IEEE Press, September 2011 : 483-487.
  • 6Su B, Lu S, Tan C L. Blurred image region detection and classification[ C]//Proc of the 19th ACM internation- al conference on Multimedia, 2011: 1397-1400.
  • 7Lin H T, Tai Y W, Brown M S. Motion regnlarization for matting motion blurred objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (11) : 2329-2336.
  • 8Andrews H, Patterson C. Singular value decompositions and digital image processing [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976, 24(1) :26-53.
  • 9Rugna J D, Konik H. Automatic blur detection for meta- data extraction in content-based retrieval context [ C ] JJ Proceedings of SPIE. San Diego, California: SPIE Press, December 2003, 5304: 285-294.
  • 10Porter T, Duff T. Compositing digital images [ J ]. SIG- GRAPH Computer Graphics, New York, NY, USA: ACM, 1984, 18(3) : 253-259.

同被引文献50

  • 1Fancourt C L, Principe J C. Competitive principal com- ponent analysis for locally stationary time series [ J ]. IEEE Transactions on Signal Processing, 1998, 46( 11 ) : 3068-3081.
  • 2Guo K L, Xu X M, Qiu F H,et al. A novel incremental weighted PCA algorithm for visual tracking [ C ] J/IEEE International Conference on Image Processing (ICIP), Melbourne, VIC, 2013 : 3914-3918.
  • 3Ba Q L, Li X Y, Bai Z Y. Clustering collaborative filtering recommendation system based on SVD algorithm[ C] //IEEE International Conference on Software Engineering and Serv- ice Science, Beiiing, 2013: 963-967.
  • 4Jen-Tzung Chien, Hsin-Lung Hsieh. Convex Divergence ICA for Blind Source Separation [ J ]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20 ( 1 ) : 302-313.
  • 5Xiaoxu Han. Nonnegative Principal Component Analysis for Cancer Molecular Pattern Discovery [ J ]. IEEE/ACM Transactions on Computational Biology and Bioinformat- ics, 2010, 7(3) : 537-549.
  • 6Rajwade A, Rangarajan A, Banerjee A. Image Denoising Using the Higher Order Singular Value Decomposition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 849-862.
  • 7Li X L, Adali T. Noncircular Complex ICA by General- ized Householder Reflections [ J ]. IEEE Transactions on Signal Processing, 2013, 61(24): 6423-6430.
  • 8Lee D, Seung H S. Learning the parts of objects by non- negative matrix factorlzation [ J ]. Nature, 1999, 401 : 788-791.
  • 9Mohammadiha N, Smaragdis P, Leijon A. Supervised and Unsupervised Speech Enhancement Using Nonnega- rive Matrix Factorization[ J ]. IEEE Transactions on Au- dio, Speech, and Language Processing, 2013, 21 (10) : 2140-2151.
  • 10Lu X Q, Wu H, Yuan Y. Double Constrained NMF for Hyperspectral Unmixing[ J]. IEEE Transactions on Geo- science and Remote Sensing, 2014, 52(5) : 2746-2758.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部