期刊文献+

不同比表面积铜锌锡硫纳米结构的合成及其光催化性能研究 被引量:1

Synthesis and photocatalytic activity of Cu_2ZnSnS_4 hierarchical nanostructures with different surface areas
原文传递
导出
摘要 通过简单的溶剂热法合成了具有不同比表面积的铜锌锡硫(CZTS)花状纳米结构.采用X射线粉末衍射、扫描电子显微镜、紫外可见分光光度计对纳米结构进行了表征.通过控制合成条件,成功制备出比表面积分别为115.3 m2/g和63.4 m2/g的CZTS花状纳米结构.研究了CZTS花状纳米结构对有机染料分子亚甲基蓝的可见光催化性能,经过7小时的可见光催化降解,比表面积为115.3 m2/g和63.4 m2/g CZTS花状纳米结构对亚甲基蓝的降解率分别为78.6%和58.8%.结果表明,CZTS花状纳米结构的比表面积对其可见光催化性能有显著影响. Cu2ZnSnS4 (CZTS) hierarchical nanostructures with different surface areas were synthesized via a facile solvothermal method in large quantity. The morphology, size, structure, composition and optical properties of the as-obtained CZTS were characterized by XRD, SEM and Uv-vis spectra. The CZTS nanostructures with surface areas of 115.3 m2/g and 63.4 m2/g were obtained by controlling the experimental conditions. The visible light photocatalytic activity of the as-synthesized CZTS was investigated by degradation of methylene blue (MB). The results indicate that the as-prepared CZTS hierarchical nanostructures with surface areas of 115.3 m2/g and 63.4 m2/g exhibit photocatalytic activity with 78.6% and 58.8% degradation of MB after 7 h reaction under visible light irradiation. The results demonstrate that the surface area of CZTS nanostructures with flower-like morphology has a great effect on their visible light photocatalystic activity.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2014年第5期537-542,共6页 Scientia Sinica(Technologica)
基金 国家自然科学基金(批准号:11074312 11374377) "985工程"(批准号:98507-012009) "211工程"和国家大学生创新性实验计划(编号:GCCX2012110012)资助项目
关键词 铜锌锡硫 比表面积 可见光催化 亚甲基蓝 Cu2ZnSnS4, surface ares, visible light photocatalystic activity, methylene blue
  • 相关文献

参考文献22

  • 1Colilla M, Balas F, Manzano M, et al. Novel method to enlarge the surface area of SBA-15. Chem Mater, 2007, 19: 3099-3101.
  • 2Lu X T, Zhuang Z B, Peng Q, et al. Wurtzite Cu2ZnSnS4 nanocrystals: A novel quaternary semiconductor. Chem Commun, 2011, 47: 3141-3143.
  • 3Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc, 2009, 131: 11672-11673.
  • 4Jiang H C, Dai P C, Feng Z Y, et al. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J Mater Chem, 2012, 22, 7502-7506.
  • 5Miyauchi M, Hanayama T, Atarashi D, et al. Photoenergy conversion in p-type Cu2ZnSnS4 nanorods and n-type metal oxide composites. J Phys Chem C, 2012, 116: 23945-23950.
  • 6Wang L, Wang W Z, Sun S M. A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H2 evolution. J Mater Chem, 2012, 22: 6553-6555.
  • 7Riha S C, Parkinson B A, Prieto A L. Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc, 2009, 131: 12054-12055.
  • 8Xu J, Yang X, Yang Q D, et al. Cu2ZnSnS4 Hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J Phys Chem C, 2012, 116: 19718-19723.
  • 9Arai T, Tajima S, Sato S, et al. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer. Chem Commun, 2011, 47: 12664-12666.
  • 10Mitzi D B, Gunawan O, Todorov T K, et al. The path towards a high-performance solution-processed kesterite solar cell. Sol Energ Mat Sol C, 2011, 95: 1421-1436.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部