期刊文献+

双注入区量子点超辐射发光管的数值模拟

Numerical Simulation of Quantum Dot Superluminescent Diodes with the Two-Section Structure
下载PDF
导出
摘要 数值模拟了结构参数(超辐射区腔长和脊宽,光放大区腔长和张角)对双注入区量子点超辐射发光管器件性能(光谱和功率等)的影响。结果表明,当器件超辐射区注入电流和放大区注入电流均固定时,随着超辐射区腔长的增加,输出光谱中激发态强度减弱,基态强度先增强后减弱;随着放大区腔长的增加,输出光谱中基态强度增加,激发态强度先增加后减弱。超辐射区脊宽越大,逆向光波耦合到超辐射区的耦合系数越大,输出光强度越小。放大区张角越大,逆向光波耦合到超辐射区的耦合系数越小,输出光强度越小。为设计和优化该类型器件结构提供一定的依据。 The effects of the structure parameters(cavity length and ridge width of the superluminescent section,cavity length and flare angle of the optical amplifier section)on the performances(spectra,power and so on)of the quantum-dot(QD)superluminescent diode(SLD) with the two-section structure were numerically simulated.The results show that when the injection currents of the superluminescent section and the optical amplifier section are fixed,with the increase of the cavity length for the superluminescent section,the intensity of the excited state(ES)decreases,and the intensity of the ground state(GS)increases firstly and then decreases in the output spectra.Furthermore,with the increase of the cavity length for the optical amplifier section,the intensity of the GS increases and the intensity of the ES increases firstly and then decreases in the output spectra.As the ridge width of the superluminescent section becomes larger,the feedback coupling coefficient will be larger and the output optical intensity will be lower. In addition,as the flare angel of the optical amplifier section becomes larger,the feedback coupling coefficient will be smaller and the output optical intensity will be lower.The research provides a certain basis for the design and optimization of such devices.
出处 《微纳电子技术》 CAS 北大核心 2014年第5期286-296,共11页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61274072 60976057) 国家高技术研究发展计划(863计划)资助项目(2013AA014201)
关键词 超辐射发光管(SLD) 量子点(QD) 双注入区结构 器件模型 结构参数 superluminescent diode(SLD) quantum dot(QD) two-section structure device model structure parameter
  • 相关文献

参考文献29

  • 1BURNS W K, CHIN L C, MOEI.LER R P. Fiber-optic gyro- scopes with broad-band sources [J]. Journal of Lightwave Technology, 1983, LT-1 (1) : 98- 105.
  • 2TAKADA K, HIMENO A, YUK/MATSU K. Resolution controllable optical-time domain reflectometry based on low eoherenee interference [J]. Journal of I.ightwave Technology, 1991, 9 (11): 1534- 1539.
  • 3HUANG D, SWANSON E A, LIN C P, et al. Optical cohe- rence tomography [J]. Science, 1991, 254 (5035): 1178- 1181.
  • 4SCHMITT J M. Optical coherence tomography (OCT): a re- view [J]. IEEE Journal of Selected Topics in Quantum Elec- tronics, 1999, 5 (4): 1205-1215.
  • 5ZOTTER S, PIRCHER M, TORZICKY T, et al. Visualiza- tion of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography [J]. Optics Express, 2011, 19 (2): 1217- 1227.
  • 6SUN Z Z, DING D, GONG Q, et al. Quantum-dot superlumi- neseent diode: a proposal for an ultrawide output spectrum [J]. Optieal and Quantum Electronics, 1999, 31 (12): 1235 - 1246.
  • 7HEO D C, SONG J D, CHOI W J, et al. High power broad- band InGaAs/GaAs quantum dot superluminescent diodes [J]. Electronics Letters, 2003, 39 (11 ) : 863 - 865.
  • 8ZHANG Z Y, WANG Z G, XU B, et al. High-performance quantum-dot superluminescent diodes [J]. IEEE Photonics Technology Letters, 2004, 16 (1) : 27 - 29.
  • 9ROSSETTI M, MARKUS A, FIORE A, et al. Quantum dot superlumineseent diodes emitting at 1.3 μm [J]. IEEE Pho- tonics Technology Letters, 2005, 17 (3) :540 - 542.
  • 10LI L H, ROSSETTI M, FIORE A, et al. Improved emission spectrum from quantum dot superluminescent light emitting diodes[J]. Physica Status Solidi (b), 2006, 243 (15) : 3988 - 3992.

二级参考文献23

  • 1Hee M R, Izatt J A, Swanson E A, Huang D, Schuman J S, Lin C P, Puliafito C A and Fujimoto J G 1995 IEEE Eng. Med. Biol. 14 67.
  • 2Wang K, Zeng Y, Ding Z H, Meng J, Shi G H and Zhang Y D 2010 Acta Phys. Sin. 59 2471 (in Chinese).
  • 3Liang Y M, Zhou D C, Meng F Y and Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese).
  • 4Brezinski M E and Fujimoto J G 1999 IEEE J. Sel. Topics Quantum Electron. 5 1185.
  • 5Dou X M, Sun B Q, Huang S S, Ni H Q, Niu Z C, Yang F H and Jia R 2009 Chin. Phys. B 18 2258.
  • 6Li Y, Dou X M, Chang X Y, Ni H Q, Niu Z C and Sun B Q 2011 Acta Phys. Sin. 60 017804 (in Chinese).
  • 7Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235.
  • 8Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27.
  • 9Liu N, Jin P and Wang Z G 2005 Electron. Lett. 41 1400.
  • 10Lu X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部