期刊文献+

光栅横向剪切干涉仪及其系统误差分析 被引量:9

System Errors Analysis of Grating Lateral Shearing Interferometer
原文传递
导出
摘要 在分析光栅横向剪切干涉仪典型结构及系统参数配置,给出其适用范围的基础上,系统研究了该干涉仪结构最显著的系统误差:几何光程误差和探测器倾斜误差。采用Zernike多项式给出波前重建前后系统误差项的解析表达式;对其大小与被测数值孔径(NA)、衍射光会聚点间距d、剪切率s之间的关系进行了定量分析。几何光程彗差和像散、探测器倾斜像散和离焦是剪切干涉差分波前中最主要的误差项,波前重建后主要导致几何光程球差和彗差,探测器倾斜彗差。重建波前误差随着NA、d的增加而迅速增大,随着s的减小而增大。特别是小剪切(s≤0.05)时,波前重建对系统误差有增益效应,重建波前的系统误差值远大于差分波前。小剪切情况下,当d>2μm、NA>0.1时,重建波前误差的均方根值远大于1nm。 Based on analysis of the typical structure and system configuration parameters of grating lateral shearing interferometer, we systematically study the most significant errors of the interferometer system: geometric optical path difference and detector tilt error. We give the analytical expression of systematic errors before and after wavefront reconstruction in the form of Zernike polynomials. The relationship between the system errors and the measured numerical aperture (NA), the distance of diffracted light converging point d, the shear ratio s are quantitatively analyzed. The most important errors for differential wavefront of shearing interferometer are the coma and astigmatism of geometric optical path difference, the astigmatism and defocus of detector tilt. These error terms will cause the errors of spherical aberration and coma of geometric optical path difference, the coma and astigmatism of detector tilt through wavefront reconstruction. The error of reconstructed wavefront increases rapidly with the increasing of NA, d, but increases with the decreasing of s. Especially, the wavefront reconstruction has gained effect on system errors with small shear ratio (a≤0.05), and the system errors of wavefront reconstruction is much larger than the differential wavefront. The root-mean-square (RMS) of reconstructed wavefront error is much greater than lnm under small shear ratio when d〉2 μm, NA〉0. 1.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第5期195-204,共10页 Chinese Journal of Lasers
基金 国家自然科学基金重点项目(60938003 61205102 61275207)
关键词 测量 光栅横向剪切干涉 系统误差 ZERNIKE多项式 光刻投影物镜 measurement grating lateral shearing interferometer systematic errors Zernike polynomials lithographic projection lens
  • 相关文献

参考文献16

  • 1Malacara D. Optical Shop Testing[M]. United States John Wiley & Sons, 2007. 108 -111.
  • 2Dai F, Tang F, Wang X, e: al: Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms[J]. Appl Opt, 2012, 51 (21) 5028-5037.
  • 3章辰,刘春玲,李大海,李萌阳,王琼华.径向剪切干涉术的标定算法研究[J].光学学报,2013,33(F06):87-92. 被引量:1
  • 4Donald J Bone, H A Baehor, Sandeman R J. Fringe pattern analysis using 2D Fourier transform[J]. Appl Opt, 1986, 25 (10): 1653 1660.
  • 5Roddier F, Roddier C. Wavefront reconstruction using iterative Fourier transforms[J]. ApplOpt, 1991, 30(11): 1325 1327.
  • 6Naulleau P P, Goldberg K A, Bokor J. Extreme ultraviolet carrier-frequency shearing interferometry of a lithographic four- mirror optical system[J]. J Vacuum Science : Technology B: Microelectronics and Nanometer Structures, 2000, 18 ( 6 ) : 2939-2943.
  • 7Miyakawa R H. Wavefront Metrology for High Resolution Optical Systems[D]. Berkeley: University of California, 2011. 44-52.
  • 8Liu Z, Sugisaki K, Ishii M, el al: Astigmatism measurement by lateral shearing interferometer [ J ]. J Vacuum Science Technology B: Microelectronics and Nanometer Structures, 2004, 22(6): 2980-2983.
  • 9Goldberg K A. Extreme Ultraviolet Interferometry [ D]. Berkeley: University of California, 1997. 74 84.
  • 10Liu Z, Sugisaki K, Zhu Y, el al: Double-grating lateral shearing interferometer for extreme ultraviolet lithography[J]. Jpn J Appl Phys, 2004, 43(6): 3718-3721.

二级参考文献19

  • 1D. Liu, Y. Yang, Y. Shen et al.. System optimization of radial shearing interferometer for aspheric testing[C]. SPIE, 2007, 6834: 68340U.
  • 2M. Wang, B. Zhang, N. Shouping. Radial shearing interferometer for aspheric surface testing[C]. SPIE, 2002, 4927: 673-676.
  • 3D. Liu, Y. Yang, J. Weng et al.. Measurement of transient near-infrared laser pulse wavefront with high precision by radial shearing interferometer[J]. Opt. Commun., 2007, 275(1): 173-178.
  • 4T. Shirai. Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging[J]. Appl. Opt., 2002, 41(19): 4013-4023.
  • 5D. Liu, Y. Yang, L. Wang et al.. Real time diagnosis of transient pulse laser with high repetition by radial shearing interferometer[J]. Appl. Opt., 2007, 46(34): 8305-8314.
  • 6C. Hernandez-Gomez, J. L. Collier, S. J. Hawkes. Wave-front control of a large-aperture laser system by use of a static phase corrector[J]. Appl. Opt., 2000, 39(12): 1954-1961.
  • 7D. Li, F. Wen, Q. Wang et al.. Improved formula of wavefront reconstruction from a radial shearing interferogram[J]. Opt. Lett., 2008, 33(3): 210-212.
  • 8D. Li, P. Wang, X. Li et al.. Algorithm for near-field reconstruction based on radial-shearing interferometry[J]. Opt. Lett., 2005, 30(5): 492-494.
  • 9N. Gu, L. Huang, Z. Yang et al.. Modal wavefront reconstruction for radial shearing interferometer with lateral shear[J]. Opt. Lett., 2011, 36(18): 3693-3695.
  • 10G. Schulz, J. Schwider. Interferometric testing of smooth surfaces[J]. Progress in Optics, 1976, 13: 93-167.

同被引文献67

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部