期刊文献+

基于贝叶斯非负矩阵分解的区域关联型像元分解 被引量:1

Area-correlated spectral unmixing based on Bayesian nonnegative matrix factorization
下载PDF
导出
摘要 研究了区域关联型像元分解技术,旨在建立相邻或相似区域、不同高光谱图像之间的空间联系性,提高像元分解结果的可比性与综合解析能力。针对独立型像元分解技术存在的问题,提出了一种基于贝叶斯非负矩阵分解的区域关联型像元分解算法,根据相邻区域图像的像元分解结果估计当前图像各个端元及其丰度值的先验概率密度函数,并通过采样的方法进行像元分解,估计端元矩阵和丰度值矩阵。模拟数据的定量评价结果表明该算法与实际值具有更好的相似度,真实数据的定量分析结果则验证了该算法的实际有效性。 A study of area-correlated spectral unmixing was conducted to establish the spatial correlation between different hyperspectral images in adjacent or similar areas to improve the comparable analysis for spectral unmixing.To solve the problem of the spatial correlation in adjacent areas for traditional spectral unmixing methods,an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization was proposed.When using the proposed method,the spatial correlation property between two adjacent areas is expressed by a priori probability density function,and the endmembers extracted from one of the adjacent areas are used to estimate the priori probability density functions of the endmembers in the current area,which works as a type of constraint in the iterative spectral unmixing process.The quantitative evaluation on synthetic hyperspectral images indicates that the results of the proposed method are more similar to the real values,while the quantitative analysis on real hyperspectral images demonstrates the effectivity of the proposed method.
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第4期365-372,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61171117) 国家科技支撑计划(2012BAH31B01)资助项目
关键词 区域关联 高光谱图像 像元分解 贝叶斯非负矩阵分解 area-correlation hyperspectral image spectral unmixing Bayesian nonnegative matrix factorization
  • 相关文献

参考文献17

  • 1Keshava N, Mustard J F. Spectral unmixing. IEEE Signal Processing Magazine. 2002,19( 1 ) :44-57.
  • 2Nascimento J, Dias J. Vertex component analysis : a fast al- gorithm to unmix hyperspectral data. IEEE Trarwtions tm Geoscieru:e and Remote Sen.ing, 2005,43 ( 4 ) : 898-910.
  • 3Boardman J W, Kruse F A, Green R 0. Mapping target signatures via partial unmixing of aviris data. Proe. Sum- maries JPL Airborne. 1995.
  • 4Winter M E. N-findr: an algorithm for fast autonomous spectra/end-member determination in hyperspectra| data. Proceedings ef the Society of Photo-optical lrstrumentation Engineers ( SPIE) , 1999,3753 : 266-275.
  • 5Sun L,Zhang Y, Guindon B. Improved iterative elTor anal- ysis for endmember extraction from byperspectral image- ry. In: Proceedings of the Society of Photo-optieal Instru- mentation Engineers (SP1E). 2008,7086.
  • 6Lee D D, Seung H S. Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Ssterns. 2001:556-562.
  • 7Pauca V P, Piper J, Plemmons R J. Nonnegative matrix factorization for spectral data analysis. Linear Algebra and Its Applications. 2006,416 ( 1 SI) :29-47.
  • 8Plaza A, Martinez P, Perez R, et al. Spatial/spectral end- member extraction by muhidimensional morphological op- erations. IEEE Transactions on Geoscience and Remote Sensing, 2002,40 ( 9 ) : 2025 -2041.
  • 9Zortea M, Plaza A. Spatial preprocessing for endmember extraction. IEEE Transactions on Geoscience and Remote Sensing. 2,009,47 ( 8 ) :2679-2693.
  • 10Dobigeon N, Tourneret J Y, Chein-I C. Semi-supervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery. IEEE Transactions on Signal Processing, 2008,56 ( 7 ) : 2684-2695.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部