期刊文献+

基于层次特征映射模型的目标识别 被引量:1

Object recognition based on a hierarchical feature map model
下载PDF
导出
摘要 为了较好地模拟生物视觉系统对复杂场景目标的感知特性,以提高目标识别水平,提出了一种新的受生物视觉信息处理的基本机理启发的前馈深度层次计算机视觉模型,即层次特征映射(HFM)模型。该模型利用高斯差分函数以及Gabor函数模拟初级视觉皮层中的方向图,并且采用竞争学习策略来学习更高层次神经元的感受野。实验表明,该模型可以很好地提取目标的特征和保留图像的主要信息,并且具有自学习的能力,能够在主流数据库上取得较好的识别结果,具有较好的发展前景。 A new biologically inspired feed-forward deep hierarchical model,i.e.the hierarchical feature map (HFM) model,is introduced to better simulate the biological vision system' s perception of objects in a complex scene for improvement of the visual object recognition.The HFM model uses the Difference of Gaussian function and Gabor function to simulate the orientation map in the primary visual cortex V1,and adopts a competitive learning strategy to learn the receptive field (RF) properties of higher level neurons.The experimental results show that the HFM model could well preserve the main structure of images.The model is also capable of self-taught learning and can achieve promising results on popular image databases,showing a good prospect for development.
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第4期414-419,共6页 Chinese High Technology Letters
基金 973计划(2012CB719903) 国家自然科学基金委创新研究群体(X198144) 国家自然科学基金青年科学基金(41101386)和国家自然科学基金(41071256)资助项目
关键词 目标识别 深度网络 方向图 竞争学习 object recognition deep network orientation map competitive learning
  • 相关文献

参考文献19

  • 1Bengio Y, Courville A, Vincent, P. Representation |earn- ing:A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 ( 8 ) : 1798-1828.
  • 2Arel l,Rose D C, Karnowski T P. Deep machine learning- A new frontier in artificial intelligence research. IEEE Computatioruzl Intelligence Magazine ,2010,5 (4) : 13-18.
  • 3Hinton G E, Osindero S,Teh Y W. A fast learning algo- rithm for deep belief nets. Neural computation, 2006, 18 (7) : 1527-1554.
  • 4Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised |earning of hier- archical representations. In:Proceedings of the 26th An- nual International Conference on Machine Learning, Mont- real, Canada, 2009. 609-616.
  • 5LeCun Y, Bottou L, Bengio Y ,et al. Gradient-based learn- ing applied to document recognition. Proceedings of the IEEE, 1998,86( 11 ) :2278-2324.
  • 6Le Q V, Ngiam J, Chen Z, et al. Tiled convolutional neuralnetworks. In:Advances in Neural Information Processing Systems, Vancouver, Canada,2010. 1279-1287.
  • 7Serre T, Wolf L, Bileschi S, et al. Robust object recogni- tion with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 ( 3 ) : 411-426.
  • 8Mutch J,/..owe D G. Object class recognition and localiza- tion using sparse features with limited receptive fields. In- ternational Journal of Computer Vision, 2008,80 ( 1 ) : 45 -57.
  • 9Paik S B, Ringach D L. Link between orientation and reti- notopic maps in primary visual cortex. Proceedings of the National Academy of Sciences,2012,109 ( 18 ) :7091-7096.
  • 10Freeman J, Simoncelli E P. Metamers of the ventral stream. Nature neurosciem'e,2011,14 (9) : 1195-1201.

同被引文献19

  • 1Rousselet G A, Thorpe S J, Fabre-Thorpe M. How paral- lel is visual processing in the ventral pathway. Trends in Cognitive Sciences, 2004, 8 (8) : 363-370.
  • 2Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 1999, 10(3) : 626-634.
  • 3Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience, 1999, 2 (11) : 1019-1025.
  • 4Connor C E, Brincat S L, Pasupathy A. Transformation of shape information in the ventral pathway. Current Opinion in Neurobiology, 2007, 17(2) : 140-147.
  • 5Kavukcuoglu K, Ranzato M A, Fergus R, et al. Learning invariant features through topographic filter maps. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Ameri- ca, 2009. 1605-1612.
  • 6Yang J, Yu K, Huang T. Supervised translation-invariant sparse coding. In: Proceedings of the International Con- ference on Computer Vision and Pattern Recognition (CVPR), San Francisco, America, 2010. 3517-3524.
  • 7Kim S, Kwon S, Kweon I S. A perceptual visual feature extraction method achieved by imitating V1 and V4 of the human visual system. Cognitive Computation, 2013, 5 (4) : 610-628.
  • 8Boynton G M, Hegde J. Visual cortex: The continuing puzzle of area V2. Current Biology, 2004, 14 ( 13 ) : R523-R524.
  • 9Tschechne S, Neumann H. Hierarchical representation of shapes in visual cortex from localized features to figu- ral shape segregation. Frontiers in Computational Neuro- science, 2014, 8:93.
  • 10Zhang D, Lu G. Review of shape representation and de- scription techniques. Pattern Recognition, 2004, 37 ( 1 ) : 1-19.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部