期刊文献+

一种基于访存行为地址映射机制的混合内存系统 被引量:4

Hybrid Memory System Using Memory Access-aware Remapping Mechanism
下载PDF
导出
摘要 相变存储器(PCM)是一种高密度的新型存储器件,其数据读取性能与现有动态随机存储器(DRAM)相当且具有低功耗和按位寻址的特性,具备了替代DRAM的潜力,特别是应用在能量受限的移动计算系统中更能发挥优势.但是PCM在延迟和功耗方面存在读写不对称性,访问延迟大,写入功耗高且使用寿命受限.如何充分利用这一新型存储技术,通过存储结构的创新来实现计算机系统访存高性能和低功耗的目的,是研究的热点和重点.本文重点针对PCM的这些问题,提出了一种基于访存行为地址重映射机制MARM的PCM-DRAM混合内存系统.该内存系统将PCM和DRAM置于同一地址空间,以实时监测到的物理内存访问为基本依据,利用内存系统的物理地址重映射机制实现对PCM和DRAM物理页面的有效管理.实验表明,与传统的DRAM内存系统相比,基于MARM管理策略的PCM-DRAM混合内存系统可实现32%的功耗延时积收益. As an advanced memory device with high density, Phase-change memory is comparable with DRAM in reading. So it is increasingly considered as a prevalent DRAM alternative due to its high density, low standby power and bit addressability, especially in the design of mobile computing systems with limited power supply. But long write latency, large write energy and limited endurance are becoming obstacles of PCM technology. An important concern for researchers is to achieve high-performance and low-power memory access according to the innovation of memory architecture using this new type of memory technology sufficiently. In this paper, we propose a Memory Access-aware Remapping Mechanism for PCM-DRAM hybrid memory system to tackle the above problems. This system places PCM and DRAM in the same address space and implements the management of PCM and DRAM physical page frame using address remapping mechanism, according to real-time monitoring of memory access pattern. Experiment results demonstrate an Energy-Delay Product ( EDP) improvement of 32% on average in MARM-based PCM-DRAM hybrid memory system, compared to conventional DRAM memory system.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第6期1201-1206,共6页 Journal of Chinese Computer Systems
基金 中国科学院战略性先导科技专项项目(XDA06020401)资助
关键词 相变存储器 混合内存 地址重映射 能耗有效管理 phase-change memory hybrid main memory address remapping energy efficient management
  • 相关文献

参考文献29

  • 1Viredaz M A,Wallach D A. Power evaluation of a handheld computer [J]. Micro, IEEE, 2003 ’23(1) :66-74.
  • 2Tian W, Li J,Zhao Y,et al. Optimal task allocation on non-volatile memory based hybrid main memory [ C ]. Proceedings of the 2011 ACM Symposium on Research in Applied Computation ,2011 : 1 -6.
  • 3Barroso L, Holzle U. The case for energy-proportional computing [J]. Computer,2007,40( 12) :33-37.
  • 4Burr G’Kurdi B, Scott J,et al. Overview of candidate device technologies for storage-class memory [ J]. IBM Journal of Research and Development,2008,52(4.5) ;449-464.
  • 5Freitas R,Wilcke W. Storage-class memory : the next storage system technology [ J]. IBM Journal of Research and Development,2008, 52(4/5)..439447.
  • 6Lam C. Storage class memory [ C ]. Solid-State and Integrated Circuit Technology (ICSICT),2010 10th IEEE International Conference on,2010 :1080-1083.
  • 7Wong H,Raoux S,Kim S,et al. Phase change memory [ J]. Proceedings of the IEEE,2010,98(12) :2201-2227.
  • 8Park K H, Park Y,Hwang W,et al. Mn-mate : resource management of manycores with dram and nonvolatile memories [ C ]. High Performance Computing and Communications (HPCC) ,12th IEEE International Conference on,2010:24-34.
  • 9Ramos L. Exploiting phase-change technology in server memory systems[D]. Rutgers University-Graduate School-New Brunswick, 2012.
  • 10Shao Z,Liu Y,Chen Y,et al. Utilizing PCM for energy optimization in embedded systems [ C]. VLSI (IS VLSI) ,2012 IEEE Computer Society Annual Symposium on. ,2012:398403.

同被引文献33

  • 1杨瑞良,唐满良,陈晓群.用于系统迭代的双系统切换方法和装置[J].电子技术(上海),2021,50(7):82-85. 被引量:1
  • 2Borkar S,Chien AA.The future of microprocessors[J].Communications of the ACM,2011,54(5):67-77.
  • 3Zhang K.ISSCC 2013tech trends[EB/OL].[2013].http://isscc.org/trends/
  • 4Shi Y,Chen HM.Memcomputing:The cape of good hope[C]//Design,Automation and Test in Europe Conference and Exhibition,2014:1-3.
  • 5Paul S,Krishna A,Qian W,et al.MAHA:An energy-efficient malleable hardware accelerator for data-intensive applications[J].IEEE Transactions on Very Large Scale Integration Systems,2014,23(6):1005-1016.
  • 6Zhu Q,Vaidyanathan K,Shacham O,et al.Design automation framework for application-specific logic-in-memory blocks[C]//23rd International Conference on Application-Specific Systems,Architectures and Processors,2012:125-132.
  • 7Morad A,Yavits L,Ginosar R.GP-SIMD processing-inmemory[J].ACM Transactions on Architecture and Code Optimization,2014,11(4):53-77.
  • 8Hussain W,Airoldi R,Hoffmann H,et al.Design of an accelerator-rich architecture by integrating multiple heterogeneous coarse grain reconfigurable arrays over a network-on-chip[C]//25th International Conference on Application-Specific Systems,Architectures and Processors,2014:131-138.
  • 9Ou P,Zhang J,Quan H,et al.A 65nm 39GOPS/W 24-core processor with 11Tb/s/W packet-controlled circuit-switched double-layer network-on-chip and heterogeneous execution array[C]//IEEE International Solid-State Circuits Conference Digest of Technical Papers,2013:56-57.
  • 10Cong J,Xiao B.Optimization of interconnects between accelerators and shared memories in dark silicon[C]//Procee dings of the International Conference on Computer-Aided Design,2013:630-637.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部