期刊文献+

高嵌锂电位正极材料LiMn_(1-x)Mg_xPO_4/C结构与电化学性能研究

Study on structure and electrochemical properties of LiMn_(1-x)Mg_xPO_4/C anode material with high intercalation potential
下载PDF
导出
摘要 采用高温固相法制备了LiMn1-xMgxPO4/C(x=0.01、,0.02、,0.03、,0.04、,0.05)系列材料,通过XRD,SEM,恒流充放电和交流阻抗等测试方法,研究了镁掺杂量对材料的结构、形貌和电化学性能的影响。结果表明:不同镁掺杂量的LiMn1-xMgxPO4/C材料的结构和形貌未发生明显的变化,Mg2+完全进入材料的晶格,占据Mn位。随着镁掺杂量的增加,材料的放电比容量呈先增加后下降的趋势,则循环稳定性的变化没有明显的规律性。LiMn0.98Mg0.02PO4/C材料0.05C放电比容量为100mAh/g,30次循环后,容量保持率为73%,而0.2C的容量保持率仅为52.43%。 A series of LiMn1-xMgxPO4/C(x=0.01、,0.02、,0.03、,0.04、,0.05)materials were synthesized by high temperature solid phase method.The ifluence of magnesium concentration on the structure,morphology and electrochemical performances of the material was studied by X-ray diffraction(XRD),scanning electron microscope(SEM),constant current charge-discharge and electrochemical impedance spectroscopy(EIS)tests.The results showed the structure and morphology of LiMn1-xMgxPO4/C did not change obviously with different magnesium doping amount.Mg2+got into the lattice fully which occupied Mn position.With increasing magnesium doping amount,discharge specific capacity of these materials increased first and then decreased,there was not distinct regularity in cycle stability.LiMn0.98Mg0.02PO4/C material discharge specific capacity reached 100mAh/g at 0.05C.After 30cycles,the capacity retention rate was 73%,while its capacity retention rate was only 52.43%at 0.2C.
出处 《化工新型材料》 CAS CSCD 北大核心 2014年第5期173-175,共3页 New Chemical Materials
基金 广州市应用基础重点项目:锂离子电池用高嵌锂电位正极材料磷酸锰锂的研究与开发(12C54041653)
关键词 锂离子电池 LiMnPO4 碳包覆 镁掺杂 电化学性能 lithium battery LiMnPO4 carbon-coating Mg-doping electrochemical performance
  • 相关文献

参考文献6

二级参考文献32

  • 1常晓燕,王志兴,李新海,匡琼,彭文杰,郭华军,张云河.锂离子电池正极材料LiMnPO_4的合成与性能[J].物理化学学报,2004,20(10):1249-1252. 被引量:15
  • 2王晓琼,李新海,王志兴,郭华军,彭文杰,刘凤举.锂离子电池正极材料LiFe_(0.9)Ni_(0.1)PO_4的合成与性能[J].中国有色金属学报,2006,16(4):739-745. 被引量:6
  • 3唐致远,谭才渊,陈玉红,崔燕,薛建军.锂离子电池高倍率放电性能研究[J].电源技术,2006,30(5):383-387. 被引量:19
  • 4Sylvain Franger, Frederic Le Cras, Carole Bourbon, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J]. Journal of Power Sources,2003,119-121:252-257.
  • 5Shoufeng Yang, Yanning Song, Peter Y Zavalij, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates [J]. Electrochemistry Communications,2002, (4): 239-244.
  • 6Masaya Takahashi,Shin-ichi Tobishima,Koji Takei, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries [J].Solid State Ionics,2002,148: 283-289.
  • 7PADHI A K,NAJUNDASWAMY K S,GOODENOUGH J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].J Electrochem Soc,1997,144(4):1188-1194.
  • 8ZHU B Q,LI X H,WANG Z X,GUO H J.Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction[J].Materials Chemistry and Physics,2006,98(2/3):373-376.
  • 9PADHI A K,NAJUNDASWAMY K S,MASQUELIER C OKADA S,GOODENOUGH J B.Effect of structure on the Fe^3+/Fe^2+ redox couple in iron phosphates[J].J Electruehem Soc,1997,144(5):1609-1613.
  • 10AMINE K,YASUDA H,YAMACHI M.Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries[J].Eiectrochem Solid-State Lett,2000,3(4):178-179.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部